• Stars
    star
    171
  • Rank 222,266 (Top 5 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 3 years ago
  • Updated almost 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

The official code of Anisotropic Stroke Control for Multiple Artists Style Transfer (ACMMM2020)

ASMA-GAN

Anisotropic Stroke Control for Multiple Artists Style Transfer

Proceedings of the 28th ACM International Conference on Multimedia

The official repository with Pytorch

Top News

2021-09-25: Training related code has been released.

[Arxiv paper]

logo

title

Methodology

Framework

Dependencies

  • python3.6+
  • pytorch1.5+
  • torchvision
  • pyyaml
  • paramiko
  • pandas
  • requests
  • tensorboard
  • tensorboardX
  • tqdm

Installation

We highly recommend you to use Anaconda for installation

conda create -n ASMA python=3.6
conda activate ASMA
conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=10.1 -c pytorch
pip install pyyaml paramiko pandas requests tensorboard tensorboardX tqdm

Preparation

Usage

To test with pretrained model

The command line below will generate 1088*1920 HD style migration pictures of 11 painters for each picture of testImgRoot (11 painters include: Berthe Moriso , Edvard Munch, Ernst Ludwig Kirchner, Jackson Pollock, Wassily Kandinsky, Oscar-Claude Monet, Nicholas Roerich, Paul Cézanne, Pablo Picasso ,Samuel Colman, Vincent Willem van Gogh. The output image(s) can be found in ./test_logs/ASMAfinal/

  • Example of style transfer with all 11 artists style

    python main.py --mode test --cuda 0 --version ASMAfinal  --dataloader_workers 8   --testImgRoot ./bench/ --nodeName localhost --checkpoint 350000 --testScriptsName common_useage --specify_sytle -1 
  • Example of style transfer with Pablo Picasso style

    python main.py --mode test --cuda 0 --version ASMAfinal  --dataloader_workers 8   --testImgRoot ./bench/ --nodeName localhost --checkpoint 350000 --testScriptsName common_useage --specify_sytle 8 
  • Example of style transfer with Wassily Kandinsky style

    python main.py --mode test --cuda 0 --version ASMAfinal  --dataloader_workers 8   --testImgRoot ./bench/ --nodeName localhost --checkpoint 350000 --testScriptsName common_useage --specify_sytle 4

--version refers to the ASMAGAN training logs name.

--testImgRoot can be a folder with images or the path of a single picture.You can assign the image(s) you want to perform style transfer to this argument.

--specify_sytle is used to specify which painter's style is used for style transfer. When the value is -1, 11 painters' styles are used for image(s) respectively for style transfer. The values corresponding to each painter's style are as follows [0: Berthe Moriso, 1: Edvard Munch, 2: Ernst Ludwig Kirchner, 3: Jackson Pollock, 4: Wassily Kandinsky, 5: Oscar-Claude Monet, 6: Nicholas Roerich, 7: Paul Cézanne, 8: Pablo Picasso, 9 : Samuel Colman, 10: Vincent Willem van Gogh]

Training

To train your own model, first change the dataset path in ./env/config.json.

Then use:

python main.py --mode train --cuda 0 --dataloader_workers 12 --version $(your experiment name) --trainYaml train.yaml

Change the training parameters in ./train_configs/train.yaml.

To cite our paper

@inproceedings{DBLP:conf/mm/ChenYLQN20,
  author    = {Xuanhong Chen and
               Xirui Yan and
               Naiyuan Liu and
               Ting Qiu and
               Bingbing Ni},
  title     = {Anisotropic Stroke Control for Multiple Artists Style Transfer},
  booktitle = {{MM} '20: The 28th {ACM} International Conference on Multimedia, 2020},
  publisher = {{ACM}},
  year      = {2020},
  url       = {https://doi.org/10.1145/3394171.3413770},
  doi       = {10.1145/3394171.3413770},
  timestamp = {Thu, 15 Oct 2020 16:32:08 +0200},
  biburl    = {https://dblp.org/rec/conf/mm/ChenYLQN20.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

Some Results

Results1

Related Projects

Learn about our other projects [RainNet], [Sketch Generation], [CooGAN], [Knowledge Style Transfer], [SimSwap],[ASMA-GAN],[Pretrained_VGG19].

High Resolution Results

More Repositories

1

SimSwap

An arbitrary face-swapping framework on images and videos with one single trained model!
Python
4,454
star
2

SimSwapPlus

A high resolution and faster face editing framework (TPAMI)
126
star
3

awesome_style_transfer

The style transfer paper collection in International CV conference
69
star
4

RainNet

[NeurIPS 2022]RainNet: A Large-Scale Imagery Dataset and Benchmark for Spatial Precipitation Downscaling
Python
48
star
5

EQSR

An Arbitrary-Scale Image Super-Resolution Framework (CVPR2023)
Python
39
star
6

CooGAN

The official tensorflow implementation of "CooGAN: A Memory-Efficient Framework for High-Resolution Facial Attribute Editing" (Accepted in ECCV2020)
Python
25
star
7

Bivolution

Accepted by AAAI2022
21
star
8

SNGAN_Projection

An unofficial PyTorch implementation of SNGAN (ICLR 2018) and cGANs with projection discriminator (ICLR 2018)
Python
17
star
9

Pretrained_VGG19

The pretrained VGG19 mode and scripts for perceptual loss
Python
17
star
10

YoutubeDataCollector

Python
7
star
11

NeuralRenderingTutorial

6
star
12

Video_Edit_Tools

A python tool set for images to video, gif and so on
Python
6
star
13

awesome-deepfake-detection

6
star
14

Pytorch-Project-Template

A project code generator for pytorch deep learning program
Python
4
star
15

Imagenet_validation_preprocess

The preprocess shell script for Imagenet validation set
Shell
2
star
16

Training_logs

2
star
17

SummerProjects

2
star
18

neuralchen

Personal Website
2
star
19

deep-photo-enhancer

pytorch implementation of deep photo enhancer
2
star
20

StyleTransfer

Python
2
star
21

SadTalker-Trainer

Reproduction of traning scripts of SadTalker
2
star
22

KNN_CUDA_GPU_Specify

A modification version of KNN_CUDA to support GPU specify
Cuda
1
star
23

ConditionalGAN_Develop

A new approach to inject the conditional information
Python
1
star
24

Multi-Domain-Translation

Python
1
star
25

test

a test project
Java
1
star
26

Style_Transformer

Python
1
star
27

oil_painting_stroke_repos

1
star
28

TraningReporter

A training log reporter, which supports distribution system
Python
1
star
29

SuperResolution_Log

1
star
30

Super-Resolution

1
star