• Stars
    star
    230
  • Rank 174,053 (Top 4 %)
  • Language
    Python
  • License
    Other
  • Created almost 7 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Tombo is a suite of tools primarily for the identification of modified nucleotides from raw nanopore sequencing data.

/ONT_logo_deprecate.png

We have a new bioinformatic resource that replaces the functionality of this project! See our new repository here: remora.

This repository is now unsupported and we do not recommend its use. Please contact Oxford Nanopore: [email protected] for help with your application if it is not possible to upgrade.


Tombo

Tombo is a suite of tools primarily for the identification of modified nucleotides from nanopore sequencing data. Tombo also provides tools for the analysis and visualization of raw nanopore signal.

Detailed documentation for all Tombo commands and algorithms can be found on the tombo documentation page.

Features

  • Modified Base Detection
    • Supports both DNA and direct RNA
    • Three detection algorithms support broad range of applications
      • Alternative model (preferred)
      • Sample comparison
      • De novo
  • Reference-anchored raw signal vizualization
  • Raw signal analysis python API
  • User-friendly model estimation methods with tutorial

Getting Started

bioconda_badge pypi_badge

Conda installation (preferred method)

# install via bioconda environment (https://bioconda.github.io/#set-up-channels)
conda install -c bioconda ont-tombo

The first step in any Tombo analysis is to re-squiggle (raw signal to reference sequence alignment) raw nanopore reads. This creates an index and stores the raw signal alignments necessary to perform downstream analyses.

In this example, an E. coli sample is tested for dam and dcm methylation (CpG model also available for human analysis). Using these results, raw signal is plotted at the most significantly modified dcm positions and the dam modified base predictions are output to a wiggle file for use in downstream processing or visualization in a genome browser.

tombo resquiggle path/to/fast5s/ genome.fasta --processes 4 --num-most-common-errors 5
tombo detect_modifications alternative_model --fast5-basedirs path/to/fast5s/ \
    --statistics-file-basename native.e_coli_sample \
    --alternate-bases dam dcm --processes 4

# plot raw signal at most significant dcm locations
tombo plot most_significant --fast5-basedirs path/to/fast5s/ \
    --statistics-filename native.e_coli_sample.dcm.tombo.stats \
    --plot-standard-model --plot-alternate-model dcm \
    --pdf-filename sample.most_significant_dcm_sites.pdf

# produces wig file with estimated fraction of modified reads at each valid reference site
tombo text_output browser_files --statistics-filename native.e_coli_sample.dam.tombo.stats \
    --file-types dampened_fraction --browser-file-basename native.e_coli_sample.dam
# also produce successfully processed reads coverage file for reference
tombo text_output browser_files --fast5-basedirs path/to/fast5s/ \
    --file-types coverage --browser-file-basename native.e_coli_sample

While motif models (CpG, dcm and dam; most accurate) and all-context specific alternate base models (5mC and 6mA; more accurate) are preferred, Tombo also allows users to investigate other or even unknown base modifications.

Here are two example commands running the de_novo method (detect deviations from expected cannonical signal levels) and the level_sample_compare method (detect deviation in signal levels between two samples of interest; works best with high coverage).

tombo detect_modifications de_novo --fast5-basedirs path/to/fast5s/ \
    --statistics-file-basename sample.de_novo_detect --processes 4
tombo text_output browser_files --statistics-filename sample.de_novo_detect.tombo.stats \
    --browser-file-basename sample.de_novo_detect --file-types dampened_fraction

tombo detect_modifications level_sample_compare --fast5-basedirs path/to/fast5s/ \
    --control-fast5-basedirs path/to/control/fast5s/ --minimum-test-reads 50 \
    --processes 4 --statistics-file-basename sample.level_samp_comp_detect
tombo text_output browser_files --statistics-filename sample.level_samp_comp_detect.tombo.stats \
    --browser-file-basename sample.level_samp_comp_detect --file-types statistic
See more complete tutorials on the documentation page.

Alternative Installation Methods

Tombo is available for installation via pip, but requires an R installation as well as R package dependencies (ggplot2 and gridextra) for all visualization functions.

# install pip package (numpy install required before tombo for cython optimization)
pip install numpy
pip install ont-tombo[full]

Tombo can also be installed directly from source (mostly for development) by running the following commands:

git clone https://github.com/nanoporetech/tombo
cd tombo
pip install -e .

Known Issues

Tombo does not support multi-read FAST5 format read data files. Please use the multi_to_single_fast5 command from the ont_fast5_api package in order to convert to single-read FAST5 format before processing with Tombo.

Help

Licence and Copyright

© 2017-18 Oxford Nanopore Technologies Ltd.

Tombo is distributed under the terms of the included MPL2 licence.

References and Supporting Information

Stoiber, M.H. et al. De novo Identification of DNA Modifications Enabled by Genome-Guided Nanopore Signal Processing. bioRxiv (2016).

http://biorxiv.org/content/early/2017/04/10/094672

More Repositories

1

dorado

Oxford Nanopore's Basecaller
C++
493
star
2

medaka

Sequence correction provided by ONT Research
Python
411
star
3

bonito

A PyTorch Basecaller for Oxford Nanopore Reads
Python
392
star
4

megalodon

Megalodon is a research command line tool to extract high accuracy modified base and sequence variant calls from raw nanopore reads by anchoring the information rich basecalling neural network output to a reference genome/transriptome.
Python
197
star
5

fast-ctc-decode

Blitzing Fast CTC Beam Search Decoder
Rust
176
star
6

remora

Methylation/modified base calling separated from basecalling.
Python
156
star
7

ont_fast5_api

Oxford Nanopore Technologies fast5 API software
Python
146
star
8

modkit

A bioinformatics tool for working with modified bases
Rust
137
star
9

pod5-file-format

Pod5: a high performance file format for nanopore reads.
C++
131
star
10

taiyaki

Training models for basecalling Oxford Nanopore reads
Python
114
star
11

pipeline-structural-variation

Pipeline for calling structural variations in whole genomes sequencing Oxford Nanopore data
Python
113
star
12

pipeline-transcriptome-de

Pipeline for differential gene expression (DGE) and differential transcript usage (DTU) analysis using long reads
Python
106
star
13

read_until_api

Read Until client library for Nanopore Sequencing
Python
102
star
14

rerio

Research release basecalling models and configurations
Python
102
star
15

flappie

Flip-flop basecaller for Oxford Nanopore reads
C
98
star
16

pomoxis

Analysis components from Oxford Nanopore Research
Python
94
star
17

scrappie

Scrappie is a technology demonstrator for the Oxford Nanopore Research Algorithms group
C
91
star
18

ont-assembly-polish

ONT assembly and Illumina polishing pipeline
Makefile
91
star
19

pychopper

A tool to identify, orient, trim and rescue full length cDNA reads
Python
79
star
20

qcat

qcat is a Python command-line tool for demultiplexing Oxford Nanopore reads from FASTQ files.
Python
77
star
21

jmespath-ts

Typescript translation of the jmespath.js package
TypeScript
63
star
22

wub

Tools and software library developed by the ONT Applications group
Python
61
star
23

minknow_api

Protobuf and gRPC specifications for the MinKNOW API
Python
55
star
24

pore-c

Pore-C support
Python
53
star
25

kmer_models

Predictive kmer models for development use
53
star
26

katuali

Analysis pipelines from Oxford Nanopore Technologies' Research Division
Python
50
star
27

duplex-tools

Splitting of sequence reads by internal adapter sequence search
Python
49
star
28

pinfish

Tools to annotate genomes using long read transcriptomics data
Go
45
star
29

sockeye

Single Cell Transcriptomics
Python
40
star
30

vbz_compression

VBZ compression plugin for nanopore signal data
C++
38
star
31

pipeline-nanopore-ref-isoforms

Pipeline for annotating genomes using long read transcriptomics data with stringtie and other tools
Python
36
star
32

Pore-C-Snakemake

Python
33
star
33

bwapy

Python bindings to bwa mem
Python
31
star
34

ont_tutorial_basicqc

A bioinformatics tutorial demonstrating a best-practice workflow to review a flowcell's sequence_summary.txt
TeX
30
star
35

pyguppyclient

Python client library for Guppy
Python
30
star
36

pipeline-umi-amplicon

Workflow to prepare high accuracy single molecule consensus sequences from amplicon data using unique molecular identifiers
Python
28
star
37

pipeline-pinfish-analysis

Pipeline for annotating genomes using long read transcriptomics data with pinfish
Python
27
star
38

pipeline-nanopore-denovo-isoforms

Pipeline for de novo clustering of long transcriptomic reads
Python
26
star
39

sloika

Sloika is Oxford Nanopore Technologies' software for training neural network models for base calling
Python
25
star
40

fast5_research

Fast5 API provided by ONT Research
Python
21
star
41

pyspoa

Python bindings to spoa
Python
18
star
42

DTR-phage-pipeline

Python
16
star
43

minimappy

Python bindings to minimap2
Python
16
star
44

isONclust2

A tool for de novo clustering of long transcriptomic reads
C++
14
star
45

jmespath-plus

JMESPath with extended collection of built-in functions
TypeScript
14
star
46

minknow_lims_interface

Protobuff and gRPC specifications for the MinKNOW LIMS Interface
13
star
47

fast5mod

Extract modifed base call information from Guppy Fast5 files.
Python
13
star
48

ont_h5_validator

Python
12
star
49

dRNA-paper-scripts

Direct RNA publication scripts
Python
11
star
50

currennt

Modified fork of CURRENNT https://sourceforge.net/projects/currennt/
C++
11
star
51

pipeline-polya-diff

Pipeline for testing shifts in poly(A) tail lengths estimated by nanopolish
Python
9
star
52

ont-open-datasets

Website describing data releases, and providing additional resources.
HTML
9
star
53

pipeline-polya-ng

Pipeline for calling poly(A) tail lengths from nanopore direct RNA data using nanopolish
Python
9
star
54

ts-runtime-typecheck

A collection of common types for TypeScript along with dynamic type cast methods.
TypeScript
9
star
55

epi2me-api

API for communicating with the EPI2ME Platform for nanopore data analysis. Used by EPI2ME Agent & CLI.
TypeScript
9
star
56

cronkite

One **hell** of a reporter
TypeScript
8
star
57

mako

Analyte identification via squiggles.
Python
7
star
58

marine-phage-paper-scripts

Python
6
star
59

homebrew-tap

Homebrew casks for applications from Oxford Nanopore Technologies PLC and Metrichor Ltd.
Ruby
6
star
60

barcoding

Naïve barcode deconvolution for amplicons
Perl
6
star
61

ont-minimap2

Cross platform builds for minimap2
CMake
5
star
62

plasmid-map

Plasmid map visualisations for Metrichor reports
TypeScript
5
star
63

spliced_bam2gff

Go
5
star
64

hammerpede

A package for training strand-specific profile HMMs for primer sets from real Nanopore data
Python
5
star
65

hatch-protobuf

Hatch plugin for generating Python files from Protocol Buffers .proto files
Python
4
star
66

fastq-filter

Quality and length filter for FastQ data
Python
4
star
67

bripy

Bam Read Index for python
C
3
star
68

pipeline-pychopper

Utility pipeline for running pychopper, a tool to identify full length cDNA reads
Python
3
star
69

lamprey

GUI for desktop basecalling
JavaScript
3
star
70

panga

Python
2
star
71

data-rambler

An experimental language for a JSON query, transformation and streaming
TypeScript
2
star
72

getopt-win32

C
2
star
73

ts-argue

TypeScript
1
star
74

onesie

A Linux device-driver for the MinION-mk1C
C
1
star
75

vbz-h5py-plugin

Python
1
star
76

fs-inspect

node.js library for indexing the contents of a folder
TypeScript
1
star