• Stars
    star
    213
  • Rank 185,410 (Top 4 %)
  • Language
  • Created over 2 years ago
  • Updated 3 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A curated list of topological deep learning (TDL) resources and links.

Awesome TDL Awesome PRs Welcome Maturity level-Prototype

A curated list of Topological Deep Learning (TDL) tools and resources.

  1. Simplicial Neural Networks. Stefania Ebli, Michaël Defferrard, Gard Spreemann. NeurIPS 2020 Workshop TDA and Beyond. Paper, Code

  2. Simplicial 2-Complex Convolutional Neural Nets. Eric Bunch, Qian You, Glenn Fung, Vikas Singh. NeurIPS 2020 Workshop TDA and Beyond. Paper, Code

  3. Cell complex neural networks. Mustafa Hajij, Kyle Istvan, and Ghada Zamzmi. NeurIPS Workshop on Topological Data Analysis and Beyond, 2020. Paper

  4. Principled simplicial neural networks for trajectory prediction. Roddenberry, T. Mitchell, Nicholas Glaze, and Santiago Segarra. ICML 2021. Paper, Code

  5. Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks. Cristian Bodnar, Fabrizio Frasca, Yu Guang Wang, Nina Otter, Guido Montúfar, Pietro Liò, Michael Bronstein. ICML 2021. Paper, Code

  6. Weisfeiler and Lehman Go Cellular: CW Networks. Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yu Guang Wang, Pietro Liò, Guido Montúfar, Michael Bronstein. NeurIPS 2021. Paper, Code

  7. Simplicial Attention Neural Networks. Lorenzo Giusti, Claudio Battiloro, Paolo Di Lorenzo, Stefania Sardellitti, Sergio Barbarossa. arXiv 2022. Paper, Code

  8. Simplicial Attention Networks. Christopher Wei Jin Goh, Cristian Bodnar, Pietro Liò. ICLR 2022 Workshop on Geometrical and Topological Representation Learning. Paper, Code

  9. Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs. Cristian Bodnar, Francesco Di Giovanni, Benjamin Paul Chamberlain, Pietro Liò, Michael M. Bronstein. NeurIPS 2022. Paper, Code

  10. Simplicial Convolutional Neural Networks. Maosheng Yang, Elvin Isufi, Geert Leus. ICASSP 2022. Paper, Code

  11. Higher-Order Attention Networks. Mustafa Hajij, Ghada Zamzmi, Theodore Papamarkou, Nina Miolane, Aldo Guzmán-Sáenz, Karthikeyan Natesan Ramamurthy. arXiv 2022. Paper

  12. Sheaf Neural Networks with Connection Laplacians. Federico Barbero, Cristian Bodnar, Haitz Sáez de Ocáriz Borde, Michael Bronstein, Petar Veličković, Pietro Liò. ICML 2022 Workshop on Topology, Algebra, and Geometry in Machine Learning. Paper

  13. Sheaf Attention Networks. Federico Barbero, Cristian Bodnar, Haitz Sáez de Ocáriz Borde, Pietro Liò. NeurIPS 2022 NeurReps Workshop. Paper

  14. Cell Attention Networks. Lorenzo Giusti, Claudio Battiloro, Lucia Testa, Paolo Di Lorenzo, Stefania Sardellitti, Sergio Barbarossa. IEEE IJCNN 2023. Paper, Code

  15. Surfing on the Neural Sheaf. Julian Suk, Lorenzo Giusti, Tamir Hemo, Miguel Lopez, Konstantinos Barmpas, Cristian Bodnar. NeurIPS 2022 NeurReps Workshop. Paper

  16. Architectures of Topological Deep Learning: A Survey on Topological Neural Networks. Mathilde Papillon, Sophia Sanborn, Mustafa Hajij, Nina Miolane. Paper

  17. Tangent Bundle Convolutional Learning: from Manifolds to Cellular Sheaves and Back. Claudio Battiloro, Zhiyang Wang, Hans Riess, Paolo Di Lorenzo, Alejandro Ribeiro. Paper, Code

  18. Topological Graph Neural Networks. Max Horn, Edward De Brouwer, Michael Moor, Yves Moreau, Bastian Rieck, and Karsten Borgwardt. ICLR 2022. Paper, Code

  19. Topological Autoencoders. Michael Moor, Max Horn, Bastian Rieck, and Karsten Borgwardt. ICML 2020. Paper, Code

  20. E(n) Equivariant Message Passing Simplicial Networks. Floor Eijkelboom, Rob Hesselink, Erik Bekkers. ICML 2023. Paper

  21. CIN++: Enhancing Topological Message Passing. Lorenzo Giusti, Teodora Reu, Francesco Ceccarelli, Cristian Bodnar, Pietro Liò. Paper, Code

  22. Simplicial Hopfield networks. Thomas F Burns, Tomoki Fukai. ICLR 2023. Paper, Code

  23. Topological Deep Learning: Graphs, Complexes, Sheaves. Cristian Bodnar. Thesis


Topological Signal Processing

  1. Topological signal processing over simplicial complexes. Sergio Barbarossa, Stefania Sardellitti. IEEE Transactions on Signal Processing 2020. Paper
  2. Signal processing on higher-order networks: Livin’ on the edge... and beyond. Michael T. Schaub, Yu Zhu, Jean-Baptiste Seby, T. Mitchell Roddenberry, Santiago Segarra. Signal Processing, 2021 - Elsevier Paper
  3. Hodge Laplacians on Graphs. Lek-Heng Lim. Society for Industrial and Applied Mathematics 2020. Paper
  4. Random Walks on Simplicial Complexes and the normalized Hodge 1-Laplacian. Michael T. Schaub, Austin R. Benson, Paul Horn, Gabor Lippner, Ali Jadbabaie. SIAM 2020. Paper
  5. What are higher-order networks? Christian Bick, Elizabeth Gross, Heather A. Harrington, Michael T. Schaub. arXiv 2021. Paper
  6. Topological Signal Processing over Cell Complexes. Stefania Sardellitti, Sergio Barbarossa, Lucia Testa. arXiv 2021. Paper
  7. Topological Signal Representation and Processing over Cell Complexes. Stefania Sardellitti, Sergio Barbarossa. arXiv 2022. Paper
  8. Robust Signal Processing Over Simplicial Complexes. Stefania Sardellitti, Sergio Barbarossa. ICASSP 2022. Paper

Algebraic Topology

  1. Computational and applied topology, tutorial. Paweł Dłotko. 2018. Paper
  2. Algebraic topology. Allen Hatcher. Cambridge Univ. Press. 2000. Book
  3. Cell Complexes through Time. Reinhard Klette. Vision Geometry 2000. Paper

Differential Geometry

  1. Introduction to Differential Geometry. Joel W. Robbin, Dietmar A. Salamon. Book
  2. Differential Geometry and Stochastic Dynamics with Deep Learning Numerics Line Kühnel, Alexis Arnaudon, and Stefan Sommer. arXiv 2017. Paper
  3. Differential Geometry meets Deep Learning (DiffGeo4DL) Joey Bose · Emile Mathieu · Charline Le Lan · Ines Chami · Frederic Sala · Christopher De Sa · Maximilian Nickel · Christopher Ré · Will Hamilton. NeurIPS 2020 Workshop. Link

Discrete Calculus

  1. Discrete Exterior Calculus. Anil N. Hirani. Caltech Library 2003. PhD Thesis

  2. Discrete Calculus: Applied Analysis on Graphs for Computational Science. Leo J. Grady, Jonathan R. Polimeni. Springer 2010 . Book

  3. Discrete Differential Forms for Computational Modeling. Mathieu Desbrun, Eva Kanso & Yiying Tong. SIGGRAPH 2006. Paper


Courses

  1. Computational Algebraic Topology. Vidit Nanda. Website, Notes, Lectures

  1. Discrete Differential Geometry. Keenan Crane. Website, Notes, Lectures

  1. Shape Analysis. Justin Solomon. Website, Lectures


Libraries

  1. GUDHI: Geometry Understanding in Higher Dimensions. Website, Code, Tutorial
  2. PyDEC: Software and Algorithms for Discretization of Exterior Calculus. Nathan Bell, Anil N. Hirani. 2011. Paper, Code

More Repositories

1

Simplicial-Attention-Networks

Official Repository for Simplicial Attention Networks
Python
26
star
2

MaRF

Official Repository for MaRF: Representing Mars as Neural Radiance Fields
Python
20
star
3

can

Official repository for Cell Attention Networks
Python
14
star
4

on-oversquashing

Official repository for On Over-Squashing in Message Passing Neural Networks (ICML 2023)
Jupyter Notebook
12
star
5

Autoencoder-Aided-Graph-Convolutional-Neural-Network

A novel architecture and training strategy for graph neural networks (GNN). The proposed architecture, named as Autoencoder-Aided GNN (AA-GNN), compresses the convolutional features at multiple hidden layers, hinging on a novel end-to-end training procedure that learns different graph representations per each layer. As a result, the computational scalability improves and the best graph representations at each layer are learnt in a totally data-driven fashion.
Python
9
star
6

awesome-ml-summaries

Summaries of relevant research papers in machine learning
7
star
7

Heterogeneous_XNN

Magnetic Resonance Imaging (MRI) for Brain Tumor Classification
Python
4
star
8

Camel-Blue

Computer Aided MEdicaL diagnosis Based on Learning Unsupervised hEterogenous Data
Jupyter Notebook
2
star
9

ADM-HM2-GP13

In this assignment we perform an analysis of Taxis in NYC. In particular, we are curious to answer to some specific research questions (RQs) that may help Taxi drivers in planning their movements throughout the city and the Taxi's users to have hints about the convenience of enjoying this service.
Jupyter Notebook
2
star
10

ADM-HW3-GP2

Jupyter Notebook
1
star
11

ADM-GP22-HW5

Jupyter Notebook
1
star
12

ADM-HW4-GP29

Homework4 for the algorithmic methods of data mining course
Jupyter Notebook
1
star
13

GCNN

This is an implementation of Graph Convolutional Networks for the task of (semi-supervised) classification of nodes in a graph.
Python
1
star
14

inception

Automatic face extraction and classification using Facenet architecture
Python
1
star