• Stars
    star
    133
  • Rank 272,600 (Top 6 %)
  • Language
    Python
  • License
    MIT License
  • Created almost 8 years ago
  • Updated over 4 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A simpler way of preparing large-scale image dataset by generalizing functions from TensorFlow-slim

create_tfrecords

A simpler way of preparing large-scale image dataset by generalizing functions from TensorFlow-slim.

Requirements

  1. Python 2.7.x
  2. TensorFlow >= 0.12

NOTE: If you want to run this program on Python 3, clone and run git checkout python-3.0 for the Python 3 branch instead.

Usage

$python create_tfrecord.py --dataset_dir=/path/to/dataset/ --tfrecord_filename=dataset_name

#Example: python create_tfrecord.py --dataset_dir=/path/to/flowers --tfrecord_filename=flowers
#Note that the dataset_dir should be the folder that contains the root directory and not the root directory itself.

Arguments

Required arguments:

  • dataset_dir (string): The directory to your dataset that is arranged in a structured way where your subdirectories keep classes of your images.

For example:

flowers\
    flower_photos\
        tulips\
            ....jpg
            ....jpg
            ....jpg
        sunflowers\
            ....jpg
        roses\
            ....jpg
        dandelion\
            ....jpg
        daisy\
            ....jpg

ย  Note: Your dataset_dir should be /path/to/flowers and not /path/to/flowers/flowers_photos

  • tfrecord_filename (string): The output name of your TFRecord files.

Optional Arguments

  • validation_size (float): The proportion of the dataset to be used for evaluation.

  • num_shards (int): The number of shards to split your TFRecord files into.

  • random_seed (int): The random seed number for repeatability.

Complete Guide

For a complete guide, please visit here.