• Stars
    star
    156
  • Rank 239,589 (Top 5 %)
  • Language
    Python
  • License
    MIT License
  • Created over 3 years ago
  • Updated almost 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Official repository of STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech, INTERSPEECH 2021

Hits

STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech

Keon Lee, Kyumin Park, Daeyoung Kim

In our paper, we propose STYLER, a non-autoregressive TTS framework with style factor modeling that achieves rapidity, robustness, expressivity, and controllability at the same time.

Abstract: Previous works on neural text-to-speech (TTS) have been addressed on limited speed in training and inference time, robustness for difficult synthesis conditions, expressiveness, and controllability. Although several approaches resolve some limitations, there has been no attempt to solve all weaknesses at once. In this paper, we propose STYLER, an expressive and controllable TTS framework with high-speed and robust synthesis. Our novel audio-text aligning method called Mel Calibrator and excluding autoregressive decoding enable rapid training and inference and robust synthesis on unseen data. Also, disentangled style factor modeling under supervision enlarges the controllability in synthesizing process leading to expressive TTS. On top of it, a novel noise modeling pipeline using domain adversarial training and Residual Decoding empowers noise-robust style transfer, decomposing the noise without any additional label. Various experiments demonstrate that STYLER is more effective in speed and robustness than expressive TTS with autoregressive decoding and more expressive and controllable than reading style non-autoregressive TTS. Synthesis samples and experiment results are provided via our demo page, and code is available publicly.

Pretrained Models

You can download pretrained models.

Dependencies

Please install the python dependencies given in requirements.txt.

pip3 install -r requirements.txt

Training

Preparation

Clean Data

  1. Download VCTK dataset and resample audios to a 22050Hz sampling rate.
  2. We provide a bash script for the resampling. Refer to data/resample.sh for the detail.
  3. Put audio files and corresponding text (transcript) files in the same directory. Both audio and text files must have the same name, excluding the extension.
  4. You may need to trim the audio for stable model convergence. Refer to Yeongtae's preprocess_audio.py for helpful preprocessing, including the trimming.
  5. Modify the hp.data_dir in hparams.py.

Noisy Data

  1. Download WHAM! dataset and resample audios to a 22050Hz sampling rate.
  2. Modify the hp.noise_dir in hparams.py.

Vocoder

  1. Unzip hifigan/generator_universal.pth.tar.zip in the same directory.

Preprocess

First, download ResCNN Softmax+Triplet pretrained model of philipperemy's DeepSpeaker for the speaker embedding as described in our paper and locate it in hp.speaker_embedder_dir.

Second, download the Montreal Forced Aligner(MFA) package and the pretrained (LibriSpeech) lexicon file through the following commands. MFA is used to obtain the alignments between the utterances and the phoneme sequences as FastSpeech2.

wget https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner/releases/download/v1.1.0-beta.2/montreal-forced-aligner_linux.tar.gz
tar -zxvf montreal-forced-aligner_linux.tar.gz

wget http://www.openslr.org/resources/11/librispeech-lexicon.txt -O montreal-forced-aligner/pretrained_models/librispeech-lexicon.txt

Then, process all the necessary features. You will get a stat.txt file in your hp.preprocessed_path/. You have to modify the f0 and energy parameters in the hparams.py according to the content of stat.txt.

python3 preprocess.py

Finally, get the noisy data separately from the clean data by mixing each utterance with a randomly selected piece of background noise from WHAM! dataset.

python3 preprocess_noisy.py

Train

Now you have all the prerequisites! Train the model using the following command:

python3 train.py

Inference

Prepare Texts

Create sentences.py in data/ which has a python list named sentences of texts to be synthesized. Note that sentences can contain more than one text.

# In 'data/sentences.py',
sentences = [
    "Nothing is lost, everything is recycled."
]

Prepare Reference Audios

Reference audio preparation has a similar process to training data preparation. There could be two kinds of references: clean and noisy.

First, put clean audios with corresponding texts in a single directory and modify the hp.ref_audio_dir in hparams.py and process all the necessary features. Refer to the Clean Data section of Train Preparation.

python3 preprocess_refs.py

Then, get the noisy references.

python3 preprocess_noisy.py --refs

Synthesize

The following command will synthesize all combinations of texts in data/sentences.py and audios in hp.ref_audio_dir.

python3 synthesize.py --ckpt CHECKPOINT_PATH

Or you can specify single reference audio in hp.ref_audio_dir as follows.

python3 synthesize.py --ckpt CHECKPOINT_PATH --ref_name AUDIO_FILENAME

Also, there are several useful options.

  1. --speaker_id will specify the speaker. The specified speaker's embedding should be in hp.preprocessed_path/spker_embed. The default value is None, and the speaker embedding is calculated at runtime on each input audio.

  2. --inspection will give you additional outputs that show the effects of each encoder of STYLER. The samples are the same as the Style Factor Modeling section on our demo page.

  3. --cont will generate the samples as the Style Factor Control section on our demo page.

    python3 synthesize.py --ckpt CHECKPOINT_PATH --cont --r1 AUDIO_FILENAME_1 --r2 AUDIO_FILENAME_1

    Note that --cont option is only working on preprocessed data. In detail, the audios' name should have the same format as VCTK dataset (e.g., p323_229), and the preprocessed data must be existing in hp.preprocessed_path.

TensorBoard

The TensorBoard loggers are stored in the log directory. Use

tensorboard --logdir log

to serve the TensorBoard on your localhost. Here are some logging views of the model training on VCTK for 560k steps.

Notes

  1. There were too many noise data where extraction was not possible through pyworld as in clean data. To resolve this, pysptk was applied to extract log f0 for the noisy data's fundamental frequency. The --noisy_input option will automate this process during synthesizing.

  2. If MFA-related problems occur during running preprocess.py, try to manually run MFA by the following command.

    # Replace $data_dir and $PREPROCESSED_PATH with ./VCTK-Corpus-92/wav48_silence_trimmed and ./preprocessed/VCTK/TextGrid, for example
    ./montreal-forced-aligner/bin/mfa_align $YOUR_data_dir montreal-forced-aligner/pretrained_models/librispeech-lexicon.txt english $YOUR_PREPROCESSED_PATH -j 8
  3. DeepSpeaker on VCTK dataset shows clear identification among speakers. The following figure shows the T-SNE plot of extracted speaker embedding in our experiments.

  4. Currently, preprocess.py divides the dataset into two subsets: train and validation set. If you need other sets, such as a test set, the only thing to do is modifying the text files (train.txt or val.txt) in hp.preprocessed_path/.

Citation

If you would like to use or refer to this implementation, please cite our paper with the repo.

@inproceedings{lee21h_interspeech,
  author={Keon Lee and Kyumin Park and Daeyoung Kim},
  title={{STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech}},
  year=2021,
  booktitle={Proc. Interspeech 2021},
  pages={4643--4647},
  doi={10.21437/Interspeech.2021-838}
}

References

More Repositories

1

PortaSpeech

PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech
Python
329
star
2

Comprehensive-Transformer-TTS

A Non-Autoregressive Transformer based Text-to-Speech, supporting a family of SOTA transformers with supervised and unsupervised duration modelings. This project grows with the research community, aiming to achieve the ultimate TTS
Python
319
star
3

DiffGAN-TTS

PyTorch Implementation of DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs
Python
310
star
4

Expressive-FastSpeech2

PyTorch Implementation of Non-autoregressive Expressive (emotional, conversational) TTS based on FastSpeech2, supporting English, Korean, and your own languages.
Python
276
star
5

DiffSinger

PyTorch implementation of DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (focused on DiffSpeech)
Python
233
star
6

DailyTalk

Official repository of DailyTalk: Spoken Dialogue Dataset for Conversational Text-to-Speech, ICASSP 2023
Python
194
star
7

StyleSpeech

PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation
Python
189
star
8

Parallel-Tacotron2

PyTorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling
Python
187
star
9

Cross-Speaker-Emotion-Transfer

PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Condition Layer Normalization and Semi-Supervised Training in Text-To-Speech
Python
180
star
10

Comprehensive-E2E-TTS

A Non-Autoregressive End-to-End Text-to-Speech (text-to-wav), supporting a family of SOTA unsupervised duration modelings. This project grows with the research community, aiming to achieve the ultimate E2E-TTS
Python
144
star
11

Soft-DTW-Loss

PyTorch implementation of Soft-DTW: a Differentiable Loss Function for Time-Series in CUDA
Python
120
star
12

VAENAR-TTS

PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.
Python
71
star
13

FastPitchFormant

PyTorch Implementation of NCSOFT's FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis
Python
71
star
14

WaveGrad2

PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis
Python
66
star
15

Daft-Exprt

PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis
Python
56
star
16

Comprehensive-Tacotron2

PyTorch Implementation of Google's Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions. This implementation supports both single-, multi-speaker TTS and several techniques to enforce the robustness and efficiency of the model.
Python
45
star
17

evaluate-zero-shot-tts

Evaluation Protocol for Large-Scale Zero-Shot TTS Literature
Python
43
star
18

Robust_Fine_Grained_Prosody_Control

PyTorch Implementation of Robust and fine-grained prosody control of end-to-end speech synthesis
Python
41
star
19

Stepwise_Monotonic_Multihead_Attention

PyTorch Implementation of Stepwise Monotonic Multihead Attention similar to Enhancing Monotonicity for Robust Autoregressive Transformer TTS
Python
31
star
20

Deep-Learning-TTS-Template

This is a template for the Non-autoregressive Deep Learning-Based TTS model (in PyTorch).
Python
15
star
21

tacotron2_MMI

Another PyTorch implementation of Tacotron2 MMI (with waveglow) which supports n_frames_per_step>1 mode(reduction windows) and diagonal guided attention for robust alignments.
Jupyter Notebook
5
star
22

Fully_Hierarchical_Fine_Grained_TTS

Pytorch Implementation of Fully-hierarchical fine-grained prosody modeling for interpretable speech synthesis (Unofficial)
2
star
23

cs231n

cs231n 2020 Spring assignments implementation
Jupyter Notebook
2
star
24

pintos

KAIST CS330 OS pintos Project
HTML
1
star