• Stars
    star
    503
  • Rank 87,054 (Top 2 %)
  • Language
    Python
  • License
    BSD 3-Clause "New...
  • Created over 3 years ago
  • Updated about 2 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

[VLDB'22] Anomaly Detection using Transformers, self-conditioning and adversarial training.

License Python 3.7, 3.8 Hits

TranAD

This repository supplements our paper "TranAD: Deep Transformer Networks for Anomaly Detection in Multivariate Time Series Data" accepted in VLDB 2022. This is a refactored version of the code used for results in the paper for ease of use. Follow the below steps to replicate each cell in the results table. The code is provided as-is. Due to limited resources, we are unable to provide support on any issues you may experience with installing or running the tool.

Our work has been discussed in the PodBean podcast! See here.

Results

Alt text

Installation

This code needs Python-3.7 or higher.

pip3 install torch==1.8.1+cpu torchvision==0.9.1+cpu torchaudio===0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
pip3 install -r requirements.txt

Dataset Preprocessing

Preprocess all datasets using the command

python3 preprocess.py SMAP MSL SWaT WADI SMD MSDS UCR MBA NAB

Distribution rights to some datasets may not be available. Check the readme files in the ./data/ folder for more details. If you want to ignore a dataset, remove it from the above command to ensure that the preprocessing does not fail.

Result Reproduction

To run a model on a dataset, run the following command:

python3 main.py --model <model> --dataset <dataset> --retrain

where <model> can be either of 'TranAD', 'GDN', 'MAD_GAN', 'MTAD_GAT', 'MSCRED', 'USAD', 'OmniAnomaly', 'LSTM_AD', and dataset can be one of 'SMAP', 'MSL', 'SWaT', 'WADI', 'SMD', 'MSDS', 'MBA', 'UCR' and 'NAB. To train with 20% data, use the following command

python3 main.py --model <model> --dataset <dataset> --retrain --less

You can use the parameters in src/params.json to set values in src/constants.py for each file.

Note: to reproduce exact results of baselines, use their original codebases (links given in our paper) as the ones implemented in this repository are not the ones used in the paper, which used the original versions. The versions provided here are for use of initial comparison and may not be identical to the original versions.

For ablation studies, use the following models: 'TranAD_SelfConditioning', 'TranAD_Adversarial', 'TranAD_Transformer', 'TranAD_Basic'.

The output will provide anomaly detection and diagnosis scores and training time. For example:

$ python3 main.py --model TranAD --dataset SMAP --retrain 
Using backend: pytorch
Creating new model: TranAD
Training TranAD on SMAP
Epoch 0,        L1 = 0.09839354782306504
Epoch 1,        L1 = 0.039524692888342115
Epoch 2,        L1 = 0.022258711623482686
Epoch 3,        L1 = 0.01833707226553135
Epoch 4,        L1 = 0.016330517334598792
100%|███████████████████████████████████████████████████████████████████| 5/5 [00:03<00:00,  1.57it/s]
Training time:     3.1920 s
Testing TranAD on SMAP
{'FN': 0,
 'FP': 182,
 'Hit@100%': 1.0,
 'Hit@150%': 1.0,
 'NDCG@100%': 0.9999999999999999,
 'NDCG@150%': 0.9999999999999999,
 'TN': 7575,
 'TP': 748,
 'f1': 0.8915325929177795,
 'precision': 0.8043010666204187,
 'recall': 0.9999999866310163,
 'threshold': 0.16133320075167037}

All outputs can be run multiple times to ensure statistical significance.

Supplementary video

IMAGE ALT TEXT HERE

Cite this work

Our paper is available in the Proceedings of VLDB: http://vldb.org/pvldb/vol15/p1201-tuli.pdf. If you use this work, please cite using the following bibtex entry.

@article{tuli2022tranad,
  title={{TranAD: Deep Transformer Networks for Anomaly Detection in Multivariate Time Series Data}},
  author={Tuli, Shreshth and Casale, Giuliano and Jennings, Nicholas R},
  journal={Proceedings of VLDB},
  volume={15},
  number={6},
  pages={1201-1214},
  year={2022}
}

License

BSD-3-Clause. Copyright (c) 2022, Shreshth Tuli. All rights reserved.

See License file for more details.

More Repositories

1

COSCO

[TPDS'21] COSCO: Container Orchestration using Co-Simulation and Gradient Based Optimization for Fog Computing Environments
Python
77
star
2

PreGAN

[Infocom'22] Preemptive Migration Prediction Network for Proactive Fault Tolerant Edge Computing
Python
36
star
3

DeepFT

Self-Supervised Deep Learning based Surrogate Models for Fault-Tolerant Edge Computing
Python
18
star
4

SplitPlace

[TMC'22] SplitPlace: AI Augmented Splitting and Placement of Large-Scale Neural Networks in Mobile Edge Environments
Python
17
star
5

MetaNet

[CLOUD'22] Learning to Dynamically Select the Optimal Scheduler in Cloud Computing Environments
Python
13
star
6

MCDS

AI Augmented Workflow Scheduling in Mobile Edge Cloud Computing Systems
Python
8
star
7

SimTune

Simulator Tuning to Bridge the Reality Gap for Resource Management in Edge Computing
Python
7
star
8

PreGANPlus

[TMC’23] Preemptive Migration Prediction Network for Proactive Fault Tolerant Edge Computing
Python
4
star
9

CILP

Co-simulation based Imitation Learner for Dynamic Resource Provisioning in Cloud Computing
Python
3
star
10

line-solver-java

Java codebase for the LINE solver
Java
2
star
11

DRAGON

Decentralized Fault Remediation in Edge Federations
Python
2
star
12

pyJMT

Python wrapper for Java Modelling Tools
Python
2
star
13

GON_MNIST

Using GONs to generate hand-written digits.
Python
1
star
14

CAROL

[DSN'22] Confidence Aware Resilience Model for Edge Federations
Python
1
star
15

GON

[NeurIPS-W'21] Generative Optimization Nets for Memory-Efficient Data Generation
Python
1
star
16

lsoda-java

Java implementation of the LSODA stiff ODE solver
Java
1
star