Awesome Dynamic Point Cloud / Point Cloud Video / Point Cloud Sequence / 4D Point Cloud Analysis
If you find any related paper, please kindly let me know. I will keep updating the page. Thanks for your valuable contribution.
For two-frame sence flow estimation, please refer to Awesome Point Cloud Scene Flow.
I. Video/Sqeuence-level Classification
1. MSR-Action3D
No. | Method | 4 | 8 | 12 | 16 | 20 | 24 |
---|---|---|---|---|---|---|---|
1 | MeteorNet | 78.11 | 81.14 | 86.53 | 88.21 | - | 88.50 |
2 | P4Transformer | 80.13 | 83.17 | 87.54 | 89.56 | 90.24 | 90.94 |
3 | PSTNet | 81.14 | 83.50 | 87.88 | 89.90 | - | 91.20 |
4 | SequentialPointNet | 77.66 | 86.45 | 88.64 | 89.56 | 91.21 | 91.94 |
5 | PSTNet++ | 81.53 | 83.50 | 88.15 | 90.24 | - | 92.68 |
6 | Anchor-Based Spatio-Temporal Attention | 80.13 | 87.54 | 89.90 | 91.24 | - | 93.03 |
7 | PST-Transformer | 81.14 | 83.97 | 88.15 | 91.98 | - | 93.73 |
8 | Kinet | 79.80 | 83.84 | 88.53 | 91.92 | - | 93.27 |
9 | PST2 (MeteorNet + STSA) | 81.14 | 86.53 | 88.55 | 89.22 | - | - |
2. NTU RBG+D 60
No. | Method | Cross Subject | Cross View |
---|---|---|---|
1 | 3DV-PointNet++ | 88.8 | 96.3 |
2 | P4Transformer | 90.2 | 96.4 |
3 | PSTNet | 90.5 | 96.5 |
4 | PSTNet++ | 91.4 | 96.7 |
5 | PST-Transformer | 91.0 | 96.4 |
6 | SequentialPointNet | 90.3 | 97.6 |
7 | Kinet | 92.3 | 96.4 |
8 | GeometryMotion-Net | 92.7 | 98.9 |
9 | GeometryMotion-Transformer | 93.7 | 99.0 |
3. NTU RBG+D 120
No. | Method | Cross Subject | Cross Setup |
---|---|---|---|
1 | 3DV-PointNet++ | 82.4 | 93.5 |
2 | P4Transformer | 86.4 | 93.5 |
3 | PSTNet | 87.0 | 93.8 |
4 | PSTNet++ | 88.6 | 93.8 |
5 | PST-Transformer | 87.5 | 94.0 |
6 | SequentialPointNet | 83.5 | 95.4 |
7 | GeometryMotion-Net | 90.1 | 93.6 |
8 | GeometryMotion-Transformer | 90.4 | 93.8 |
4. SHREC'17
No. | Method | Acc |
---|---|---|
1 | PointLSTM (Min et al.) | 94.7 |
2 | Kinet | 95.2 |
5. NvGesture
No. | Method | Acc |
---|---|---|
1 | FlickerNet | 86.3 |
2 | PointLSTM (Min et al.) | 87.5 |
3 | Kinet | 89.1 |
II. Point-level Segmentation
1. Synthia 4D
No. | Method | mIoU (3 frames) |
---|---|---|
1 | MinkNet14 | 77.46 |
2 | MeteorNet | 81.80 |
3 | PSTNet | 82.24 |
4 | PSTNet++ | 82.60 |
5 | ASAP-Net | 82.73 |
6 | P4Transformer | 83.16 |
7 | PST-Transformer | 83.95 |
8 | Anchor-Based Spatio-Temporal Attention | 84.77 |
9 | PST2 | 81.86 |
SemanticKITTI
2.No. | Paper Title | Venue |
---|---|---|
1 | SpSequenceNet: Semantic Segmentation Network on 4D Point Clouds | CVPR'20 |
2 | LiDAR-based Recurrent 3D Semantic Segmentation with Temporal Memory Alignment | 3DV'20 |
3 | 4D Panoptic LiDAR Segmentation | CVPR'21 |
4 | LiDAR-based 4D Panoptic Segmentation via Dynamic Shifting Network | ICCV'21 |
5 | Spatial-Temporal Transformer for 3D Point Cloud Sequences (PST2) | WACV'22 |