• Stars
    star
    1,907
  • Rank 24,318 (Top 0.5 %)
  • Language
    Python
  • License
    BSD 3-Clause "New...
  • Created almost 6 years ago
  • Updated 24 days ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Feature engineering package with sklearn like functionality

Feature Engine

PyPI - Python Version GitHub PyPI Conda CircleCI Codecov Read the Docs Code style: black GitHub contributors Gitter Total Downloads Monthly Downloads DOI JOSS first-timers-only Sponsorship

feature-engine logo

Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models. Feature-engine's transformers follow Scikit-learn's functionality with fit() and transform() methods to learn the transforming parameters from the data and then transform it.

Feature-engine features in the following resources

Blogs about Feature-engine

Documentation

Current Feature-engine's transformers include functionality for:

  • Missing Data Imputation
  • Categorical Encoding
  • Discretisation
  • Outlier Capping or Removal
  • Variable Transformation
  • Variable Creation
  • Variable Selection
  • Datetime Features
  • Time Series
  • Preprocessing
  • Scikit-learn Wrappers

Imputation Methods

  • MeanMedianImputer
  • RandomSampleImputer
  • EndTailImputer
  • AddMissingIndicator
  • CategoricalImputer
  • ArbitraryNumberImputer
  • DropMissingData

Encoding Methods

  • OneHotEncoder
  • OrdinalEncoder
  • CountFrequencyEncoder
  • MeanEncoder
  • WoEEncoder
  • RareLabelEncoder
  • DecisionTreeEncoder
  • StringSimilarityEncoder

Discretisation methods

  • EqualFrequencyDiscretiser
  • EqualWidthDiscretiser
  • GeometricWidthDiscretiser
  • DecisionTreeDiscretiser
  • ArbitraryDiscreriser

Outlier Handling methods

  • Winsorizer
  • ArbitraryOutlierCapper
  • OutlierTrimmer

Variable Transformation methods

  • LogTransformer
  • LogCpTransformer
  • ReciprocalTransformer
  • ArcsinTransformer
  • PowerTransformer
  • BoxCoxTransformer
  • YeoJohnsonTransformer

Variable Creation:

  • MathFeatures
  • RelativeFeatures
  • CyclicalFeatures

Feature Selection:

  • DropFeatures
  • DropConstantFeatures
  • DropDuplicateFeatures
  • DropCorrelatedFeatures
  • SmartCorrelationSelection
  • ShuffleFeaturesSelector
  • SelectBySingleFeaturePerformance
  • SelectByTargetMeanPerformance
  • RecursiveFeatureElimination
  • RecursiveFeatureAddition
  • DropHighPSIFeatures
  • SelectByInformationValue
  • ProbeFeatureSelection

Datetime

  • DatetimeFeatures
  • DatetimeSubtraction

Time Series

  • LagFeatures
  • WindowFeatures
  • ExpandingWindowFeatures

Preprocessing

  • MatchCategories
  • MatchVariables

Wrappers:

  • SklearnTransformerWrapper

Installation

From PyPI using pip:

pip install feature_engine

From Anaconda:

conda install -c conda-forge feature_engine

Or simply clone it:

git clone https://github.com/feature-engine/feature_engine.git

Example Usage

>>> import pandas as pd
>>> from feature_engine.encoding import RareLabelEncoder

>>> data = {'var_A': ['A'] * 10 + ['B'] * 10 + ['C'] * 2 + ['D'] * 1}
>>> data = pd.DataFrame(data)
>>> data['var_A'].value_counts()
Out[1]:
A    10
B    10
C     2
D     1
Name: var_A, dtype: int64
>>> rare_encoder = RareLabelEncoder(tol=0.10, n_categories=3)
>>> data_encoded = rare_encoder.fit_transform(data)
>>> data_encoded['var_A'].value_counts()
Out[2]:
A       10
B       10
Rare     3
Name: var_A, dtype: int64

Find more examples in our Jupyter Notebook Gallery or in the documentation.

Contribute

Details about how to contribute can be found in the Contribute Page

Briefly:

  • Fork the repo
  • Clone your fork into your local computer: git clone https://github.com/<YOURUSERNAME>/feature_engine.git
  • navigate into the repo folder cd feature_engine
  • Install Feature-engine as a developer: pip install -e .
  • Optional: Create and activate a virtual environment with any tool of choice
  • Install Feature-engine dependencies: pip install -r requirements.txt and pip install -r test_requirements.txt
  • Create a feature branch with a meaningful name for your feature: git checkout -b myfeaturebranch
  • Develop your feature, tests and documentation
  • Make sure the tests pass
  • Make a PR

Thank you!!

Documentation

Feature-engine documentation is built using Sphinx and is hosted on Read the Docs.

To build the documentation make sure you have the dependencies installed: from the root directory: pip install -r docs/requirements.txt.

Now you can build the docs using: sphinx-build -b html docs build

License

BSD 3-Clause

Sponsor us

Sponsor us and support further our mission to democratize machine learning and programming tools through open-source software.