The library contains optimised NN (Neural Network) functions for various Espressif chips.
-
Supported platforms:
- TensorFlow Lite Micro (TFLite Micro). Repo can be found here
-
Supported ESP chips include:
- ESP32-S3 (Assembly versions optimised to benefit from vector instructions of ESP32-S3)
- ESP32 (Generic optimisations)
- ESP32-C3 (Generic optimisations)
-
Kernelwise performance on ESP32-S3 chip
- Numbers are ticks taken for kernel to execute
- Chip config: 240MHz, SPI: QPI 80MHz, Data cache: 64KB
Function ANSI C Optimized Opt Ratio Data info Memory elementwise_add 312327 71644 4.36 size = 1615 External elementwise_mul 122046 30950 3.95 size = 1615 External convolution 4642259 461398 10.06 input(10,10), filter(64x1x1x64), pad(0,0), stride(1,1) External convolution 300032 43578 6.9 input(8,8), filter(16x1x1x16), pad(0,0), stride(1,1) External convolution 2106801 643689 3.27 input(10,10), filter(64x3x3x3), pad(0,0), stride(1,1) External depthwise conv 1192832 191931 6.2 input (18, 18), pad(0,0), stride(1,1) filter: 1x3x3x16 External depthwise conv 1679406 366102 4.59 input (12, 12), pad(1,1), stride(1,1) filter: 8x5x5x4 External max pool 485714 76747 6.33 input(16,16), filter (1x3x3x16) Internal avg pool 541462 160580 3.37 input(16,16), filter (1x3x3x16) Internal fully connected 12290 4439 2.77 len: 265, ch = 3 Internal prelu (relu6) 18315 1856 9.87 size, 1615 Internal
-
To configure, please use
idf.py menuconfig
and underESP-NN
selectNN_OPTIMIZATIONS
-
There are two options presented:
- Optimized versions
- ANSI C
-
Default selection is for
Optimized versions
. For ESP32-S3, assembly versions are automatically selected, whereas for other chips (viz., ESP32, ESP32-C3), generic optimisations are selected. -
For debugging purposes, you may want to select
ANSI C
reference versions.
If you encounter an issue with ESP-NN, or wish to submit a feature request, please use the Issues section on the Github.
For general questions related to this library, please use the esp32.com forum.
Please check CONTRIBUTING.md for further information if you'd like to contribute to ESP-NN.
All original source code in this repository is Copyright (C) 2020-2021 Espressif Systems. This source code is licensed under the Apache License 2.0 as described in the file LICENSE.