• Stars
    star
    180
  • Rank 213,097 (Top 5 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 3 years ago
  • Updated about 2 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

jax library for E3 Equivariant Neural Networks

e3nn-jax Coverage Status

Documentation Documentation Status

import e3nn_jax as e3nn

# Create a random array made of a scalar (0e) and a vector (1o)
array = e3nn.normal("0e + 1o", jax.random.PRNGKey(0))

print(array)  
# 1x0e+1x1o [ 1.8160863  -0.75488514  0.33988908 -0.53483534]

# Compute the norms
norms = e3nn.norm(array)
print(norms)
# 1x0e+1x0e [1.8160863  0.98560894]

# Compute the norm of the full array
total_norm = e3nn.norm(array, per_irrep=False)
print(total_norm)
# 1x0e [2.0662997]

# Compute the tensor product of the array with itself
tp = e3nn.tensor_square(array)
print(tp)
# 2x0e+1x1o+1x2e
# [ 1.9041989   0.25082085 -1.3709364   0.61726785 -0.97130704  0.40373924
#  -0.25657722 -0.18037902 -0.18178469 -0.14190137]

🚀 44% faster than pytorch*

*Speed comparison done with a full model (MACE) during training (revMD-17) on a GPU (NVIDIA RTX A5000)

Please always check the ChangeLog for breaking changes.

Installation

To install the latest released version:

pip install --upgrade e3nn-jax

To install the latest GitHub version:

pip install git+https://github.com/e3nn/e3nn-jax.git

Need Help?

Ask a question in the discussions tab.

What is different from the PyTorch version?

The main difference is the presence of the class IrrepsArray. IrrepsArray contains the irreps (Irreps) along with the data array.

Citing

@misc{e3nn_paper,
    doi = {10.48550/ARXIV.2207.09453},
    url = {https://arxiv.org/abs/2207.09453},
    author = {Geiger, Mario and Smidt, Tess},
    keywords = {Machine Learning (cs.LG), Artificial Intelligence (cs.AI), Neural and Evolutionary Computing (cs.NE), FOS: Computer and information sciences, FOS: Computer and information sciences}, 
    title = {e3nn: Euclidean Neural Networks},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}