Torch-RecHub
中文Wiki站
查看最新研发进度,认领感兴趣的研发任务,学习rechub模型复现心得,加入rechub共建者团队等
安装
#稳定版
pip install torch-rechub
#最新版(推荐)
1. git clone https://github.com/datawhalechina/torch-rechub.git
2. cd torch-rechub
3. python setup.py install
核心定位
易用易拓展,聚焦复现业界实用的推荐模型,以及泛生态化的推荐场景
主要特性
-
scikit-learn风格易用的API(fit、predict),即插即用
-
模型训练与模型定义解耦,易拓展,可针对不同类型的模型设置不同的训练机制
-
接受pandas的DataFrame、Dict数据输入,上手成本低
-
高度模块化,支持常见Layer,容易调用组装成新模型
-
LR、MLP、FM、FFM、CIN
-
target-attention、self-attention、transformer
-
-
支持常见排序模型
- WideDeep、DeepFM、DIN、DCN、xDeepFM等
-
支持常见召回模型
- DSSM、YoutubeDNN、YoutubeDSSM、FacebookEBR、MIND等
-
丰富的多任务学习支持
-
SharedBottom、ESMM、MMOE、PLE、AITM等模型
-
GradNorm、UWL、MetaBanlance等动态loss加权机制
-
-
聚焦更生态化的推荐场景
-
冷启动
-
延迟反馈
- 去偏
-
-
支持丰富的训练机制
-
对比学习
-
蒸馏学习
-
-
第三方高性能开源Trainer支持(Pytorch Lighting)
-
更多模型正在开发中
快速使用
使用案例
-
所有模型使用案例参考
/examples
-
202206 Datawhale-RecHub推荐课程 组队学习期间notebook教程参考
/tutorials
精排(CTR预测)
from torch_rechub.models.ranking import DeepFM
from torch_rechub.trainers import CTRTrainer
from torch_rechub.utils.data import DataGenerator
dg = DataGenerator(x, y)
train_dataloader, val_dataloader, test_dataloader = dg.generate_dataloader(split_ratio=[0.7, 0.1], batch_size=256)
model = DeepFM(deep_features=deep_features, fm_features=fm_features, mlp_params={"dims": [256, 128], "dropout": 0.2, "activation": "relu"})
ctr_trainer = CTRTrainer(model)
ctr_trainer.fit(train_dataloader, val_dataloader)
auc = ctr_trainer.evaluate(ctr_trainer.model, test_dataloader)
多任务排序
from torch_rechub.models.multi_task import SharedBottom, ESMM, MMOE, PLE, AITM
from torch_rechub.trainers import MTLTrainer
task_types = ["classification", "classification"]
model = MMOE(features, task_types, 8, expert_params={"dims": [32,16]}, tower_params_list=[{"dims": [32, 16]}, {"dims": [32, 16]}])
mtl_trainer = MTLTrainer(model)
mtl_trainer.fit(train_dataloader, val_dataloader)
auc = ctr_trainer.evaluate(ctr_trainer.model, test_dataloader)
召回模型
from torch_rechub.models.matching import DSSM
from torch_rechub.trainers import MatchTrainer
from torch_rechub.utils.data import MatchDataGenerator
dg = MatchDataGenerator(x y)
train_dl, test_dl, item_dl = dg.generate_dataloader(test_user, all_item, batch_size=256)
model = DSSM(user_features, item_features, temperature=0.02,
user_params={
"dims": [256, 128, 64],
"activation": 'prelu',
},
item_params={
"dims": [256, 128, 64],
"activation": 'prelu',
})
match_trainer = MatchTrainer(model)
match_trainer.fit(train_dl)