• Stars
    star
    189
  • Rank 204,649 (Top 5 %)
  • Language
    Python
  • Created over 5 years ago
  • Updated about 5 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Time delay neural network (TDNN) implementation in Pytorch using unfold method

TDNN

Simple Time Delay Neural Network (TDNN) implementation in Pytorch. Uses the unfold method to slide over an input sequence.

Alt text [1] https://www.danielpovey.com/files/2015_interspeech_multisplice.pdf

Factorized TDNN (TDNN-F)

I've also implemented the Factorized TDNN from Kaldi (TDNN-F) in PyTorch here: https://github.com/cvqluu/Factorized-TDNN

Usage

To recreate the TDNN part of the x-vector network in [2]:

from tdnn import TDNN

# Assuming 24 dim MFCCs per frame

frame1 = TDNN(input_dim=24, output_dim=512, context_size=5, dilation=1)
frame2 = TDNN(input_dim=512, output_dim=512, context_size=3, dilation=2)
frame3 = TDNN(input_dim=512, output_dim=512, context_size=3, dilation=3)
frame4 = TDNN(input_dim=512, output_dim=512, context_size=1, dilation=1)
frame5 = TDNN(input_dim=512, output_dim=1500, context_size=1, dilation=1)

# Input to frame1 is of shape (batch_size, T, 24)
# Output of frame5 will be (batch_size, T-14, 1500)

Alt text [2] https://www.danielpovey.com/files/2018_icassp_xvectors.pdf