• Stars
    star
    2,326
  • Rank 19,794 (Top 0.4 %)
  • Language
    Python
  • License
    MIT License
  • Created about 3 years ago
  • Updated 7 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

๐Ÿ–ผ๏ธ Create beautiful maps from OpenStreetMap data in a streamlit webapp

prettymapp ๐Ÿ–ผ๏ธ

Prettymapp is a webapp and Python package to create beautiful maps from OpenStreetMap data


๐ŸŽˆ Try it out here: prettymapp on streamlit ๐ŸŽˆ



Based on the prettymaps project

Prettymapp is based on a rewrite of the fantastic prettymaps project by @marceloprates. All credit for the original idea, designs and implementation go to him. The prettymapp rewrite focuses on speed and adapted configuration to interface with the webapp. It drops more complex configuration options in favour of improved speed, reduced code complexity and simplified configuration interfaces. It is partially tested and adds a streamlit webapp component.

Running the app locally

git clone https://github.com/chrieke/prettymapp.git
cd prettymapp
pip install -r streamlit-prettymapp/requirements.txt
streamlit run streamlit-prettymapp/app.py

Python package

You can also use prettymapp without the webapp, directly in Python. This lets you customize the functionality or build your own application.

Installation:

pip install prettymapp

Define the area, download and plot the OSM data:

from prettymapp.geo import get_aoi
from prettymapp.osm import get_osm_geometries
from prettymapp.plotting import Plot
from prettymapp.settings import STYLES

aoi = get_aoi(address="Praรงa Ferreira do Amaral, Macau", radius=1100, rectangular=False)
df = get_osm_geometries(aoi=aoi)

fig = Plot(
    df=df,
    aoi_bounds=aoi.bounds,
    draw_settings=STYLES["Peach"]
).plot_all()

fig.savefig("map.jpg")

To customize the map appearance, use the additional arguments of the Plot class (e.g. shape, contour_width etc.). Check the preconfigured styles and webapp examples for inspiration.

More Repositories

1

awesome-satellite-imagery-datasets

๐Ÿ›ฐ๏ธ List of satellite image training datasets with annotations for computer vision and deep learning
3,581
star
2

awesome-geospatial-companies

๐ŸŒ List & Map of 700+ companies for geospatial jobs (GIS, Earth Observation, UAV, Satellite, Digital Farming, ..)
Python
704
star
3

InstanceSegmentation_Sentinel2

๐ŸŒฑ Deep Learning for Instance Segmentation of Agricultural Fields - Master thesis
Jupyter Notebook
383
star
4

streamlit-keplergl

๐Ÿ—พ Streamlit Component for rendering kepler.gl maps
Python
61
star
5

geojson-invalid-geometry

๐Ÿ—บ๏ธ List of GeoJSON invalid geometry issues with example files
31
star
6

mkdocs-exclude-search

๐Ÿ”Ž A mkdocs plugin that excludes selected chapters from the docs search index.
Python
27
star
7

GoogleEarthEngine-side-projects

Google Earth Engine side projects and tutorial scripts
JavaScript
26
star
8

geojson-validator

๐Ÿ› ๏ธ Validate GeoJSON and automatically fix invalid geometries
Python
21
star
9

vector-validator

๐Ÿ”บ Webapp that validates and automatically fixes your geospatial vector data.
Python
16
star
10

cgeo

โญ•Convenience functions for geospatial & cv
Python
9
star
11

iceberg-locations-data

๐ŸงŠ Iceberg locations on S3, weekly updated via AWS lambda
Python
6
star
12

streamlit-prettymaps

Streamlit app to render pretty maps from OpenStreetMap data. Based on marceloprates prettymaps package.
Python
5
star
13

geocoder-comparison

๐Ÿ“ A comparison of multiple geocoders - streamlit webapp.
Python
5
star
14

calendar-insights

๐Ÿ“… Query the Google Calendar API & visualize meeting habits & interactions
Jupyter Notebook
2
star