• Stars
    star
    152
  • Rank 244,685 (Top 5 %)
  • Language PLpgSQL
  • License
    Apache License 2.0
  • Created over 5 years ago
  • Updated 7 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

aws_s3 postgres extension to import/export data from/to s3 (compatible with aws_s3 extension on AWS RDS)

postgres-aws-s3

Starting on Postgres version 11.1, AWS RDS added support for S3 import using the extension aws_s3. It allows to import data from S3 within Postgres using the function aws_s3.table_import_from_s3 and export the data to S3 using the function aws_s3.query_export_to_s3.

In order to support development either on RDS or locally, we implemented our own aws_s3 extension that is similar to the one provided in RDS. It was implemented in Python using the boto3 library.

Installation

Make sure boto3 is installed using the default Python 3 installed on your computer. On MacOS, this can be done as follows:

sudo /usr/bin/easy_install boto3

Then clone the repository postgres-aws-s3:

git clone [email protected]:chimpler/postgres-aws-s3

Make sure that pg_config can be run:

$ pg_config 

BINDIR = /Applications/Postgres.app/Contents/Versions/13/bin
DOCDIR = /Applications/Postgres.app/Contents/Versions/13/share/doc/postgresql
HTMLDIR = /Applications/Postgres.app/Contents/Versions/13/share/doc/postgresql
INCLUDEDIR = /Applications/Postgres.app/Contents/Versions/13/include
PKGINCLUDEDIR = /Applications/Postgres.app/Contents/Versions/13/include/postgresql
INCLUDEDIR-SERVER = /Applications/Postgres.app/Contents/Versions/13/include/postgresql/server
LIBDIR = /Applications/Postgres.app/Contents/Versions/13/lib
...

Then install postgres-aws-s3:

make install

Finally in Postgres:

psql> CREATE EXTENSION plpython3u;
psql> CREATE EXTENSION aws_s3;

If you already have an old version of aws_s3 installed, you might want to drop and recreate the extension:

psql> DROP EXTENSION aws_s3;
psql> CREATE EXTENSION aws_s3;

Using aws_s3

Importing data using table_import_from_s3

Let's create a table that will import the data from S3:

psql> CREATE TABLE animals (
    name TEXT,
    age INT
);

Let's suppose the following file is present in s3 at s3://test-bucket/animals.csv:

name,age
dog,12
cat,15
parrot,103
tortoise,205

The function aws_s3.table_import_from_s3 has 2 signatures that can be used.

Using s3_uri and aws_credentials objects

aws_s3.table_import_from_s3 (
   table_name text, 
   column_list text, 
   options text, 
   s3_info aws_commons._s3_uri_1,
   credentials aws_commons._aws_credentials_1,
   endpoint_url text default null
)

Using this signature, the s3_uri and aws_credentials objects will need to be created first:

Parameter Description
table_name the name of the table
column_list list of columns to copy
options options passed to the COPY command in Postgres
s3_info An aws_commons._s3_uri_1 composite type containing the bucket, file path and region information about the s3 object
credentials An aws_commons._aws_credentials_1 composite type containing the access key, secret key, session token credentials
endpoint_url optional endpoint to use (e.g., http://localhost:4566)
Example
psql> SELECT aws_commons.create_s3_uri(
   'test-bucket',
   'animals.csv',
   'us-east-1'
) AS s3_uri \gset

psql> \echo :s3_uri
(test-bucket,animals.csv,us-east-1)

psql> SELECT aws_commons.create_aws_credentials(
   '<my_access_id>',
   '<my_secret_key>',
   '<session_token>'
) AS credentials \gset

psql> \echo :credentials
(<my_access_id>,<my_secret_key>,<session_token>)

psql> SELECT aws_s3.table_import_from_s3(
   'animals',
   '',
   '(FORMAT CSV, DELIMITER '','', HEADER true)',
   :'s3_uri',
   :'credentials'
);

 table_import_from_s3
----------------------
                    4
(1 row)

psql> select * from animals;
   name   | age
----------+-----
 dog      |  12
 cat      |  15
 parrot   | 103
 tortoise | 205
(4 rows)

You can also call the function as:

psql> SELECT aws_s3.table_import_from_s3(
   'animals',
   '',
   '(FORMAT CSV, DELIMITER '','', HEADER true)',
   aws_commons.create_s3_uri(
      'test-bucket',
      'animals.csv',
      'us-east-1'
   ),
   aws_commons.create_aws_credentials(
      '<my_access_id>',
      '<my_secret_key>',
      '<session_token>'
   )
);

Using the function table_import_from_s3 with all the parameters

aws_s3.table_import_from_s3 (
   table_name text,
   column_list text,
   options text,
   bucket text,
   file_path text,
   region text,
   access_key text,
   secret_key text,
   session_token text,
   endpoint_url text default null
) 
Parameter Description
table_name the name of the table
column_list list of columns to copy
options options passed to the COPY command in Postgres
bucket S3 bucket
file_path S3 path to the file
region S3 region (e.g., us-east-1)
access_key aws access key id
secret_key aws secret key
session_token optional session token
endpoint_url optional endpoint to use (e.g., http://localhost:4566)
Example
psql> SELECT aws_s3.table_import_from_s3(
    'animals',
    '',
    '(FORMAT CSV, DELIMITER '','', HEADER true)',
    'test-bucket',
    'animals.csv',
    'us-east-1',
    '<my_access_id>',
    '<my_secret_key>',
    '<session_token>'
);

 table_import_from_s3
----------------------
                    4
(1 row)

psql> select * from animals;

   name   | age
----------+-----
 dog      |  12
 cat      |  15
 parrot   | 103
 tortoise | 205
(4 rows)

If you use localstack, you can set endpoint_url to point to the localstack s3 endpoint:

psql> SET aws_s3.endpoint_url TO 'http://localstack:4566'; 

You can also set the AWS credentials:

psql> SET aws_s3.access_key_id TO 'dummy';
psql> SET aws_s3.secret_key TO 'dummy';
psql> SET aws_s3.session_token TO 'dummy';

and then omit them from the function calls.

For example:

psql> SELECT aws_s3.table_import_from_s3(
    'animals',
    '',
    '(FORMAT CSV, DELIMITER '','', HEADER true)',
    'test-bucket',
    'animals.csv',
    'us-east-1'
);

You can pass them also as optional parameters. For example:

psql> SELECT aws_s3.table_import_from_s3(
    'animals',
    '',
    '(FORMAT CSV, DELIMITER '','', HEADER true)',
    'test-bucket',
    'animals.csv',
    'us-east-1',
    endpoint_url := 'http://localstack:4566'
);

Support for gzip files

If the file has the metadata Content-Encoding=gzip in S3, then the file will be automatically unzipped prior to be copied to the table. One can update the metadata in S3 by following the instructions described here.

Exporting data using query_export_to_s3

Documentation: https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-s3-export.html

Similarly to the import functions, you can export the data using different methods.

Using s3_uri and aws_credentials objects

aws_s3.query_export_to_s3(
    query text,    
    s3_info aws_commons._s3_uri_1,
    credentials aws_commons._aws_credentials_1 default null,
    options text default null, 
    endpoint_url text default null
)

Using this signature, the s3_uri and optionally aws_credentials objects will need to be created first:

Parameter Description
query query that returns the data to export
s3_info An aws_commons._s3_uri_1 composite type containing the bucket, file path and region information about the s3 object
credentials An aws_commons._aws_credentials_1 composite type containing the access key, secret key, session token credentials
options options passed to the COPY command in Postgres
endpoint_url optional endpoint to use (e.g., http://localhost:4566)
Example
psql> SELECT * FROM aws_s3.query_export_to_s3(
   'select * from animals',
   aws_commons.create_s3_uri(
      'test-bucket',
      'animals2.csv',
      'us-east-1'
   ),
   aws_commons.create_aws_credentials(
      '<my_access_id>',
      '<my_secret_key>',
      '<session_token>'
   ),
   options := 'FORMAT CSV, DELIMITER '','', HEADER true'
);

If you set the AWS credentials:

psql> SET aws_s3.aws_s3.access_key_id TO 'dummy';
psql> SET aws_s3.aws_s3.secret_key TO 'dummy';
psql> SET aws_s3.session_token TO 'dummy';

You can omit the credentials.

Example

Using the function table_import_from_s3 with all the parameters

aws_s3.query_export_to_s3(
    query text,    
    bucket text,    
    file_path text,
    region text default null,
    access_key text default null,
    secret_key text default null,
    session_token text default null,
    options text default null, 
    endpoint_url text default null   
)
Parameter Description
query query that returns the data to export
bucket S3 bucket
file_path S3 path to the file
region S3 region (e.g., us-east-1)
access_key aws access key id
secret_key aws secret key
session_token optional session token
options options passed to the COPY command in Postgres
endpoint_url optional endpoint to use (e.g., http://localhost:4566)
Example
psql> SELECT * FROM aws_s3.query_export_to_s3(
   'select * from animals',
   'test-bucket',
   'animals.csv',
   'us-east-1',
    '<my_access_id>',
    '<my_secret_key>',
    '<session_token>',
   options:='FORMAT CSV, HEADER true'
);

 rows_uploaded | files_uploaded | bytes_uploaded
---------------+----------------+----------------
             5 |              1 |             47

If you set the AWS credentials:

psql> SET aws_s3.aws_s3.access_key_id TO 'dummy';
psql> SET aws_s3.aws_s3.secret_key TO 'dummy';
psql> SET aws_s3.session_token TO 'dummy';

You can omit the credential fields.

Docker Compose

We provide a docker compose config to run localstack and postgres in docker containers. To start it:

$ docker-compose up

It will initialize a s3 server on port 4566 with a bucket test-bucket:

aws s3 --endpoint-url=http://localhost:4566 ls s3://test-bucket

You can connect to the postgres server:

$ psql -h localhost -p 15432 -U test test 
(password: test)

Initialize the extensions:

psql> CREATE EXTENSION plpythonu;
psql> CREATE EXTENSION aws_s3;

Set the endpoint url and the aws keys to use s3 (in localstack you can set the aws creds to any non-empty string):

psql> SET aws_s3.endpoint_url TO 'http://localstack:4566';
psql> SET aws_s3.aws_access_key_id TO 'dummy';
psql> SET aws_s3.secret_access_key TO 'dummy';

Create a table animals:

psql> CREATE TABLE animals (
    name TEXT,
    age INT
);

psql> INSERT INTO animals (name, age) VALUES
('dog', 12),
('cat', 15),
('parrot', 103),
('tortoise', 205);

Export it to s3:

psql> select * from aws_s3.query_export_to_s3('select * from animals', 'test-bucket', 'animals.csv', 'us-east-1', options:='FORMAT CSV, HEADER true');
 rows_uploaded | files_uploaded | bytes_uploaded
---------------+----------------+----------------
             5 |              1 |             47

Import it back to another table:

psql> CREATE TABLE new_animals (LIKE animals);
psql> select * from aws_s3.query_export_to_s3('select * from animals', 'test-bucket', 'animals.csv', 'us-east-1', options:='FORMAT CSV, HEADER true');
 rows_uploaded | files_uploaded | bytes_uploaded
---------------+----------------+----------------
             4 |              1 |             38

psql> SELECT aws_s3.table_import_from_s3(
    'new_animals',
    '',
    '(FORMAT CSV, HEADER true)',
    'test-bucket',
    'animals.csv', 'us-east-1'
);
 table_import_from_s3
----------------------
                    4
(1 row)

psql> SELECT * FROM new_animals;
   name   | age
----------+-----
 dog      |  12
 cat      |  15
 parrot   | 103
 tortoise | 205
(4 rows)

Contributors

Thanks