postgres-aws-s3
Starting on Postgres version 11.1, AWS RDS added support for S3 import using the extension aws_s3
. It allows to import data from S3 within Postgres using the function aws_s3.table_import_from_s3
and export the data to S3 using the function aws_s3.query_export_to_s3
.
In order to support development either on RDS or locally, we implemented our own aws_s3
extension that is similar to
the one provided in RDS. It was implemented in Python using the boto3 library.
Installation
Make sure boto3 is installed using the default Python 3 installed on your computer. On MacOS, this can be done as follows:
sudo /usr/bin/easy_install boto3
Then clone the repository postgres-aws-s3
:
git clone [email protected]:chimpler/postgres-aws-s3
Make sure that pg_config
can be run:
$ pg_config
BINDIR = /Applications/Postgres.app/Contents/Versions/13/bin
DOCDIR = /Applications/Postgres.app/Contents/Versions/13/share/doc/postgresql
HTMLDIR = /Applications/Postgres.app/Contents/Versions/13/share/doc/postgresql
INCLUDEDIR = /Applications/Postgres.app/Contents/Versions/13/include
PKGINCLUDEDIR = /Applications/Postgres.app/Contents/Versions/13/include/postgresql
INCLUDEDIR-SERVER = /Applications/Postgres.app/Contents/Versions/13/include/postgresql/server
LIBDIR = /Applications/Postgres.app/Contents/Versions/13/lib
...
Then install postgres-aws-s3
:
make install
Finally in Postgres:
psql> CREATE EXTENSION plpython3u;
psql> CREATE EXTENSION aws_s3;
If you already have an old version of aws_s3
installed, you might want to drop and recreate the extension:
psql> DROP EXTENSION aws_s3;
psql> CREATE EXTENSION aws_s3;
Using aws_s3
Importing data using table_import_from_s3
Let's create a table that will import the data from S3:
psql> CREATE TABLE animals (
name TEXT,
age INT
);
Let's suppose the following file is present in s3 at s3://test-bucket/animals.csv
:
name,age
dog,12
cat,15
parrot,103
tortoise,205
The function aws_s3.table_import_from_s3
has 2 signatures that can be used.
Using s3_uri and aws_credentials objects
aws_s3.table_import_from_s3 (
table_name text,
column_list text,
options text,
s3_info aws_commons._s3_uri_1,
credentials aws_commons._aws_credentials_1,
endpoint_url text default null
)
Using this signature, the s3_uri
and aws_credentials
objects will need to be created first:
Parameter | Description |
---|---|
table_name | the name of the table |
column_list | list of columns to copy |
options | options passed to the COPY command in Postgres |
s3_info | An aws_commons._s3_uri_1 composite type containing the bucket, file path and region information about the s3 object |
credentials | An aws_commons._aws_credentials_1 composite type containing the access key, secret key, session token credentials |
endpoint_url | optional endpoint to use (e.g., http://localhost:4566 ) |
Example
psql> SELECT aws_commons.create_s3_uri(
'test-bucket',
'animals.csv',
'us-east-1'
) AS s3_uri \gset
psql> \echo :s3_uri
(test-bucket,animals.csv,us-east-1)
psql> SELECT aws_commons.create_aws_credentials(
'<my_access_id>',
'<my_secret_key>',
'<session_token>'
) AS credentials \gset
psql> \echo :credentials
(<my_access_id>,<my_secret_key>,<session_token>)
psql> SELECT aws_s3.table_import_from_s3(
'animals',
'',
'(FORMAT CSV, DELIMITER '','', HEADER true)',
:'s3_uri',
:'credentials'
);
table_import_from_s3
----------------------
4
(1 row)
psql> select * from animals;
name | age
----------+-----
dog | 12
cat | 15
parrot | 103
tortoise | 205
(4 rows)
You can also call the function as:
psql> SELECT aws_s3.table_import_from_s3(
'animals',
'',
'(FORMAT CSV, DELIMITER '','', HEADER true)',
aws_commons.create_s3_uri(
'test-bucket',
'animals.csv',
'us-east-1'
),
aws_commons.create_aws_credentials(
'<my_access_id>',
'<my_secret_key>',
'<session_token>'
)
);
Using the function table_import_from_s3 with all the parameters
aws_s3.table_import_from_s3 (
table_name text,
column_list text,
options text,
bucket text,
file_path text,
region text,
access_key text,
secret_key text,
session_token text,
endpoint_url text default null
)
Parameter | Description |
---|---|
table_name | the name of the table |
column_list | list of columns to copy |
options | options passed to the COPY command in Postgres |
bucket | S3 bucket |
file_path | S3 path to the file |
region | S3 region (e.g., us-east-1 ) |
access_key | aws access key id |
secret_key | aws secret key |
session_token | optional session token |
endpoint_url | optional endpoint to use (e.g., http://localhost:4566 ) |
Example
psql> SELECT aws_s3.table_import_from_s3(
'animals',
'',
'(FORMAT CSV, DELIMITER '','', HEADER true)',
'test-bucket',
'animals.csv',
'us-east-1',
'<my_access_id>',
'<my_secret_key>',
'<session_token>'
);
table_import_from_s3
----------------------
4
(1 row)
psql> select * from animals;
name | age
----------+-----
dog | 12
cat | 15
parrot | 103
tortoise | 205
(4 rows)
If you use localstack, you can set endpoint_url
to point to the localstack s3 endpoint:
psql> SET aws_s3.endpoint_url TO 'http://localstack:4566';
You can also set the AWS credentials:
psql> SET aws_s3.access_key_id TO 'dummy';
psql> SET aws_s3.secret_key TO 'dummy';
psql> SET aws_s3.session_token TO 'dummy';
and then omit them from the function calls.
For example:
psql> SELECT aws_s3.table_import_from_s3(
'animals',
'',
'(FORMAT CSV, DELIMITER '','', HEADER true)',
'test-bucket',
'animals.csv',
'us-east-1'
);
You can pass them also as optional parameters. For example:
psql> SELECT aws_s3.table_import_from_s3(
'animals',
'',
'(FORMAT CSV, DELIMITER '','', HEADER true)',
'test-bucket',
'animals.csv',
'us-east-1',
endpoint_url := 'http://localstack:4566'
);
Support for gzip files
If the file has the metadata Content-Encoding=gzip
in S3, then the file will be automatically unzipped prior to be copied to the table.
One can update the metadata in S3 by following the instructions described here.
Exporting data using query_export_to_s3
Documentation: https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-s3-export.html
Similarly to the import functions, you can export the data using different methods.
Using s3_uri and aws_credentials objects
aws_s3.query_export_to_s3(
query text,
s3_info aws_commons._s3_uri_1,
credentials aws_commons._aws_credentials_1 default null,
options text default null,
endpoint_url text default null
)
Using this signature, the s3_uri
and optionally aws_credentials
objects will need to be created first:
Parameter | Description |
---|---|
query | query that returns the data to export |
s3_info | An aws_commons._s3_uri_1 composite type containing the bucket, file path and region information about the s3 object |
credentials | An aws_commons._aws_credentials_1 composite type containing the access key, secret key, session token credentials |
options | options passed to the COPY command in Postgres |
endpoint_url | optional endpoint to use (e.g., http://localhost:4566 ) |
Example
psql> SELECT * FROM aws_s3.query_export_to_s3(
'select * from animals',
aws_commons.create_s3_uri(
'test-bucket',
'animals2.csv',
'us-east-1'
),
aws_commons.create_aws_credentials(
'<my_access_id>',
'<my_secret_key>',
'<session_token>'
),
options := 'FORMAT CSV, DELIMITER '','', HEADER true'
);
If you set the AWS credentials:
psql> SET aws_s3.aws_s3.access_key_id TO 'dummy';
psql> SET aws_s3.aws_s3.secret_key TO 'dummy';
psql> SET aws_s3.session_token TO 'dummy';
You can omit the credentials.
Example
Using the function table_import_from_s3 with all the parameters
aws_s3.query_export_to_s3(
query text,
bucket text,
file_path text,
region text default null,
access_key text default null,
secret_key text default null,
session_token text default null,
options text default null,
endpoint_url text default null
)
Parameter | Description |
---|---|
query | query that returns the data to export |
bucket | S3 bucket |
file_path | S3 path to the file |
region | S3 region (e.g., us-east-1 ) |
access_key | aws access key id |
secret_key | aws secret key |
session_token | optional session token |
options | options passed to the COPY command in Postgres |
endpoint_url | optional endpoint to use (e.g., http://localhost:4566 ) |
Example
psql> SELECT * FROM aws_s3.query_export_to_s3(
'select * from animals',
'test-bucket',
'animals.csv',
'us-east-1',
'<my_access_id>',
'<my_secret_key>',
'<session_token>',
options:='FORMAT CSV, HEADER true'
);
rows_uploaded | files_uploaded | bytes_uploaded
---------------+----------------+----------------
5 | 1 | 47
If you set the AWS credentials:
psql> SET aws_s3.aws_s3.access_key_id TO 'dummy';
psql> SET aws_s3.aws_s3.secret_key TO 'dummy';
psql> SET aws_s3.session_token TO 'dummy';
You can omit the credential fields.
Docker Compose
We provide a docker compose config to run localstack and postgres in docker containers. To start it:
$ docker-compose up
It will initialize a s3 server on port 4566 with a bucket test-bucket:
aws s3 --endpoint-url=http://localhost:4566 ls s3://test-bucket
You can connect to the postgres server:
$ psql -h localhost -p 15432 -U test test
(password: test)
Initialize the extensions:
psql> CREATE EXTENSION plpythonu;
psql> CREATE EXTENSION aws_s3;
Set the endpoint url and the aws keys to use s3 (in localstack you can set the aws creds to any non-empty string):
psql> SET aws_s3.endpoint_url TO 'http://localstack:4566';
psql> SET aws_s3.aws_access_key_id TO 'dummy';
psql> SET aws_s3.secret_access_key TO 'dummy';
Create a table animals:
psql> CREATE TABLE animals (
name TEXT,
age INT
);
psql> INSERT INTO animals (name, age) VALUES
('dog', 12),
('cat', 15),
('parrot', 103),
('tortoise', 205);
Export it to s3:
psql> select * from aws_s3.query_export_to_s3('select * from animals', 'test-bucket', 'animals.csv', 'us-east-1', options:='FORMAT CSV, HEADER true');
rows_uploaded | files_uploaded | bytes_uploaded
---------------+----------------+----------------
5 | 1 | 47
Import it back to another table:
psql> CREATE TABLE new_animals (LIKE animals);
psql> select * from aws_s3.query_export_to_s3('select * from animals', 'test-bucket', 'animals.csv', 'us-east-1', options:='FORMAT CSV, HEADER true');
rows_uploaded | files_uploaded | bytes_uploaded
---------------+----------------+----------------
4 | 1 | 38
psql> SELECT aws_s3.table_import_from_s3(
'new_animals',
'',
'(FORMAT CSV, HEADER true)',
'test-bucket',
'animals.csv', 'us-east-1'
);
table_import_from_s3
----------------------
4
(1 row)
psql> SELECT * FROM new_animals;
name | age
----------+-----
dog | 12
cat | 15
parrot | 103
tortoise | 205
(4 rows)
Contributors
- Oleksandr Yarushevskyi (@oyarushe)
- Stephan Huiser (@huiser)
- Jan Griesel (@phileon)
- Matthew Painter (@mjgp2)
- Justin Leto (@jleto)
Thanks
- Thomas Gordon Lowrey IV @gordol