• Stars
    star
    589
  • Rank 75,909 (Top 2 %)
  • Language
    Python
  • License
    MIT License
  • Created over 6 years ago
  • Updated about 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

All image quality metrics you need in one package.

Buy Me A Coffee

Sewar

Downloads Build Status codecov PyPI version

Sewar is a python package for image quality assessment using different metrics. You can check documentation here.

Implemented metrics

  • Mean Squared Error (MSE)
  • Root Mean Squared Error (RMSE)
  • Peak Signal-to-Noise Ratio (PSNR) [1]
  • Structural Similarity Index (SSIM) [1]
  • Universal Quality Image Index (UQI) [2]
  • Multi-scale Structural Similarity Index (MS-SSIM) [3]
  • Erreur Relative Globale Adimensionnelle de SynthΓ¨se (ERGAS) [4]
  • Spatial Correlation Coefficient (SCC) [5]
  • Relative Average Spectral Error (RASE) [6]
  • Spectral Angle Mapper (SAM) [7]
  • Spectral Distortion Index (D_lambda) [8]
  • Spatial Distortion Index (D_S) [8]
  • Quality with No Reference (QNR) [8]
  • Visual Information Fidelity (VIF) [9]
  • Block Sensitive - Peak Signal-to-Noise Ratio (PSNR-B) [10]

Todo

  • Add command-line support for No-reference metrics

Installation

Just as simple as

pip install sewar

Example usage

a simple example to use UQI

>>> from sewar.full_ref import uqi
>>> uqi(img1,img2)
0.9586952304831419

Example usage for command line interface

sewar [metric] [GT path] [P path] (any extra parameters)

An example to use SSIM

foo@bar:~$ sewar ssim images/ground_truth.tif images/deformed.tif -ws 13
ssim : 0.8947009811410856

Available metrics list

mse, rmse, psnr, rmse_sw, uqi, ssim, ergas, scc, rase, sam, msssim, vifp, psnrb 

Contributors

Special thanks to @sachinpuranik99 and @sunwj.

References

[1] "Image quality assessment: from error visibility to structural similarity." 2004)
[2] "A universal image quality index." (2002)
[3] "Multiscale structural similarity for image quality assessment." (2003)
[4] "Quality of high resolution synthesised images: Is there a simple criterion?." (2000)
[5] "A wavelet transform method to merge Landsat TM and SPOT panchromatic data." (1998)
[6] "Fusion of multispectral and panchromatic images using improved IHS and PCA mergers based on wavelet decomposition." (2004)
[7] "Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm." (1992)
[8] "Multispectral and panchromatic data fusion assessment without reference." (2008)
[9] "Image information and visual quality." (2006)
[10] "Quality Assessment of Deblocked Images" (2011)