• Stars
    star
    348
  • Rank 121,840 (Top 3 %)
  • Language
  • Created about 5 years ago
  • Updated 8 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Worth-reading papers and related awesome resources on aspect-based sentiment analysis (ABSA). 值得一读的方面级情感分析论文与相关资源集合

ABSAPapers

Worth-reading papers and related awesome resources on aspect-based sentiment analysis (ABSA). This repository mainly focused on aspect-term sentiment classification (ATSC). ABSA task contains five fine-grained subtasks:

  • Aspect Term Sentiment Classification (ATSC)
  • Aspect Term Extraction (ATE)
  • Aspect Category Sentiment Classification (ACSC)
  • Aspect Category Detection (ACD)
  • Opniton Term Extraction (OTE)

Suggestions about adding papers, repositories and other resource are welcomed!

值得一读的方面级情感分析论文与相关资源集合。这里主要关注方面词(aspect-term)的情感分类。具体来说,方面级情感分析包括方面词情感分类、方面词抽取、方面类目情感分类、方面类目抽取、观点词抽取五个子任务。

欢迎新增论文、代码仓库与其他资源等建议!

We will add a score table of representative and latest ABSA models like NLP-progress in the near future, so stay tuned!

近期将参考NLP-progress的形式增加一个数据集分值表,敬请期待!

Paper

  • Effective LSTMs for Target-Dependent Sentiment Classification. Duyu Tang, Bing Qin, Xiaocheng Feng, Ting Liu. (COLING 2016) [paper][code] - TD-LSTM TC-LSTM
  • Attention-based LSTM for Aspect-level Sentiment Classification. Yequan Wang, Minlie Huang, Xiaoyan Zhu, Li Zhao. (EMNLP 2016) [paper] - ATAE-LSTM
  • A Hierarchical Model of Reviews for Aspect-based Sentiment Analysis. Sebastian Ruder, Parsa Ghaffari, John G. Breslin. (EMNLP 2016) [paper] - H-LSTM
  • Aspect Level Sentiment Classification with Deep Memory Network. Duyu Tang, Bing Qin, Ting Liu. (EMNLP 2016) [paper][code] - MemNet
  • Interactive Attention Networks for Aspect-Level Sentiment Classification. Dehong Ma, Sujian Li, Xiaodong Zhang, Houfeng Wang. (IJCAI 2017) [paper] - IAN
  • Recurrent Attention Network on Memory for Aspect Sentiment Analysis. Peng Chen, Zhongqian Sun, Lidong Bing, Wei Yang. (EMNLP 2017) [paper][unofficial code] - RAM
  • Document-Level Multi-Aspect Sentiment Classification as Machine Comprehension. Yichun Yin, Yangqiu Song, Ming Zhang. (EMNLP 2017) [paper]
  • Attention Modeling for Targeted Sentiment. Jiangming Liu, Yue Zhang. (EACL 2017) [paper] - BiLSTM-ATT-G
  • Aspect-level Sentiment Classification with HEAT (HiErarchical ATtention) Network. Jiajun Cheng, Shenglin Zhao, Jiani Zhang, Irwin King, Xin Zhang, Hui Wang. (CIKM 2017) [paper]
  • Aspect Based Sentiment Analysis with Gated Convolutional Networks. Wei Xue, Tao Li. (ACL 2018) [paper][code] - GCAE
  • Target-Sensitive Memory Networks for Aspect Sentiment Classification. Shuai Wang, Sahisnu Mazumder, Bing Liu, Mianwei Zhou, Yi Chang. (ACL 2018) [paper] - TMN
  • Transformation Networks for Target-Oriented Sentiment Classification. Xin Li, Lidong Bing, Wai Lam, Bei Shi. (ACL 2018) [paper][code] - TNet
  • Exploiting Document Knowledge for Aspect-level Sentiment Classification. Ruidan He, Wee Sun Lee, Hwee Tou Ng, Daniel Dahlmeier. (ACL 2018) [paper][code]
  • Learning to Attend via Word-Aspect Associative Fusion for Aspect-Based Sentiment Analysis. Yi Tay, Luu Anh Tuan, Siu Cheung Hui. (AAAI 2018) [paper] - AF-LSTM
  • Targeted Aspect-Based Sentiment Analysis via Embedding Commonsense Knowledge into an Attentive LSTM. Yukun Ma, Haiyun Peng, Erik Cambria. (AAAI 2018) [paper][code] - Sentic LSTM
  • A Position-aware Bidirectional Attention Network for Aspect-level Sentiment Analysis. Shuqin Gu, Lipeng Zhang, Yuexian Hou, Yin Song. (COLING 2018) [paper][code] - PBAN
  • Enhanced Aspect Level Sentiment Classification with Auxiliary Memory. Peisong Zhu, Tieyun Qian. (COLING 2018) [paper] - DAuM
  • Document-level Multi-aspect Sentiment Classification by Jointly Modeling Users, Aspects, and Overall Ratings. Junjie Li, Haitong Yang, Chengqing Zong. (COLING 2018) [paper] - HUARN
  • Effective Attention Modeling for Aspect-Level Sentiment Classification. Ruidan He, Wee Sun Lee, Hwee Tou Ng, Daniel Dahlmeier. (COLING 2018) [paper]
  • Modeling Inter-Aspect Dependencies for Aspect-Based Sentiment Analysis. Devamanyu Hazarika, Soujanya Poria, Prateek Vij, Gangeshwar Krishnamurthy, Erik Cambria, Roger Zimmermann. (NAACL 2018) [paper][unofficial code]
  • Recurrent Entity Networks with Delayed Memory Update for Targeted Aspect-Based Sentiment Analysis. Fei Liu, Trevor Cohn, Timothy Baldwin. (NAACL 2018) [paper] [code]
  • Content Attention Model for Aspect Based Sentiment Analysis. Qiao Liu, Haibin Zhang, Yifu Zeng, Ziqi Huang, Zufeng Wu. (WWW 2018) [paper][code] - Cabasc
  • Aspect Level Sentiment Classification with Attention-over-Attention Neural Networks. Binxuan Huang, Yanglan Ou, Kathleen M. Carley. (SBP-BRiMS 2018) [paper] - AOA
  • Aspect Sentiment Classification with both Word-level and Clause-level Attention Networks. Jingjing Wang, Jie Li, Shoushan Li, Yangyang Kang, Min Zhang, Luo Si, Guodong Zhou. (IJCAI 2018) [paper]
  • IARM: Inter-Aspect Relation Modeling with Memory Networks in Aspect-Based Sentiment Analysis. Navonil Majumder, Soujanya Poria, Alexander F. Gelbukh, Md. Shad Akhtar, Erik Cambria, Asif Ekbal. (EMNLP 2018) [paper][code]
  • Multi-grained Attention Network for Aspect-Level Sentiment Classification. Feifan Fan, Yansong Feng, Dongyan Zhao. (EMNLP 2018) [paper] - MGAN
  • Parameterized Convolutional Neural Networks for Aspect Level Sentiment Classification. Binxuan Huang, Kathleen M. Carley. (EMNLP 2018) [paper] - PCNN
  • Left-Center-Right Separated Neural Network for Aspect-based Sentiment Analysis with Rotatory Attention. Shiliang Zheng, Rui Xia. (CoRR 2018) [paper] - LCR-Rot
  • Syntax-Aware Aspect-Level Sentiment Classification with Proximity-Weighted Convolution Network. Chen Zhang, Qiuchi Li, Dawei Song. (SIGIR 2019) [paper][code] - PWCN
  • Aspect-based Sentiment Classification with Aspect-specific Graph Convolutional Networks. Chen Zhang, Qiuchi Li, Dawei Song. (EMNLP 2019) [paper][code] - ASGCN
  • Aspect-Level Sentiment Analysis Via Convolution over Dependency Tree. Kai Sun, Richong Zhang, Samuel Mensah, Yongyi Mao, Xudong Liu. (EMNLP 2019) [paper][code] - CDT-ABSA
  • A Novel Aspect-Guided Deep Transition Model for Aspect Based Sentiment Analysis. Yunlong Liang, Fandong Meng, Jinchao Zhang, Jinan Xu, Yufeng Chen, Jie Zhou. (EMNLP 2019) [paper][code] - AGDT
  • CAN: Constrained Attention Networks for Multi-Aspect Sentiment. Mengting Hu, Shiwan Zhao, Li Zhang, Keke Cai, Zhong Su, Renhong Cheng, Xiaowei Shen. (EMNLP 2019) [paper] - CAN
  • BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova. (NAACL 2019) [paper] - BERT-SPC
  • BERT Post-Training for Review Reading Comprehension and Aspect-based Sentiment Analysis. Hu Xu, Bing Liu, Lei Shu, Philip S. Yu. (NAACL 2019) [paper][code] - BERT-PT
  • Utilizing BERT for Aspect-Based Sentiment Analysis via Constructing Auxiliary Sentence. Chi Sun, Luyao Huang, Xipeng Qiu. (NAACL 2019) [paper][code]
  • Attentional Encoder Network for Targeted Sentiment Classification. Youwei Song, Jiahai Wang, Tao Jiang, Zhiyue Liu, Yanghui Rao. (CoRR 2019) [paper][code] - AEN-BERT
  • LCF: A Local Context Focus Mechanism for Aspect-Based Sentiment Classification. Biqing Zeng, Heng Yang 2, Ruyang Xu, Wu Zhou, Xuli Han (Applied Sciences 2019) [paper][code] - LCF-BERT
  • A Multi-task Learning Model for Chinese-oriented Aspect Polarity Classification and Aspect Term Extraction. Heng Yang, Biqing Zeng, Jianhao Yang, Youwei Song, Ruyang Xu. (CoRR 2019) [paper][code] - LCF-ATEPC
  • Target-Dependent Sentiment Classification With BERT. Zhengjie Gao, Ao Feng, Xinyu Song, Xi Wu. (IEEE Access Volumn 7 2019) [paper][code] - TD-BERT
  • Adapt or Get Left Behind: Domain Adaptation through BERT Language Model Finetuning for Aspect-Target Sentiment Classification. Alexander Rietzler, Sebastian Stabinger, Paul Opitz, Stefan Engl. (LREC 2020) [paper][code] - BERT-ADA
  • Convolution over Hierarchical Syntactic and Lexical Graphs for Aspect Level Sentiment Analysis. Mi Zhang, Tieyun Qian. (EMNLP 2020) [paper]
  • Modelling Context and Syntactical Features for Aspect-based Sentiment Analysis. Minh Hieu Phan, Philip O. Ogunbona. (ACL 2020) [paper][code] - LCFS-BERT
  • Constituency Lattice Encoding for Aspect Term Extraction. Yunyi Yang, Kun Li, Xiaojun Quan, Weizhou Shen, Qinliang Su. (COLING 2020) [paper]
  • Attention Transfer Network for Aspect-level Sentiment Classification. Fei Zhao, Zhen Wu, Xinyu Dai. (COLING 2020) [paper][code] - ATN
  • Jointly Learning Aspect-Focused and Inter-Aspect Relations with Graph Convolutional Networks for Aspect Sentiment Analysis. Bin Liang, Rongdi Yin, Lin Gui, Jiachen Du, Ruifeng Xu. [paper] - InterGCN
  • Syntax-Aware Graph Attention Network for Aspect-Level Sentiment Classification. Lianzhe Huang, Xin Sun, Sujian Li, Linhao Zhang, Houfeng Wang. (COLING 2020) [paper] - SAGAT
  • Constituency Lattice Encoding for Aspect Term Extraction. Yunyi Yang, Kun Li, Xiaojun Quan, Weizhou Shen, Qinliang Su. (COLING 2020) [paper]

Multi-task Learning & End-to-End

Combining two or more ABSA's subtasks in one framework to produce results is an intutively effective way for industrial application. There are three patterns of multi-task learning: pipeline, joint and end-to-end model. For pipeline pattern, the framework complete subtasks in more than one step, using the result of last step to guide the next step's output, which might lead to error propogation problem. Joint model processes the data with shared layers to extract universal semantic features for all subtasks. Then model outputs results of different tasks through task-specific layers. End-to-end model complete tasks like sequence labeling.

Aspect Extraction & Sentiment Classification

  • MTNA: A Neural Multi-task Model for Aspect Category Classification and Aspect Term Extraction On Restaurant Reviews. Wei Xue, Wubai Zhou, Tao Li, Qing Wang. (IJCNLP 2017) [paper] - MTNA
  • Exploiting Coarse-to-Fine Task Transfer for Aspect-Level Sentiment Classification. Zheng Li, Ying Wei, Yu Zhang, Xiang Zhang, Xin Li. (AAAI 2019) [paper] - MGAN
  • A Unified Model for Opinion Target Extraction and Target Sentiment Prediction. Xin Li, Lidong Bing, Piji Li, Wai Lam. (AAAI 2019) [paper][code] - UNIFIED E2E-TBSA
  • An Interactive Multi-Task Learning Network for End-to-End Aspect-Based Sentiment Analysis. Ruidan He, Wee Sun Lee, Hwee Tou Ng, Daniel Dahlmeier. (ACL 2019) [paper][code] - IMN-E2E-ABSA
  • DOER: Dual Cross-Shared RNN for Aspect Term-Polarity Co-Extraction. Huaishao Luo, Tianrui Li, Bing Liu, Junbo Zhang. (ACL 2019) [paper][code]
  • Learning Explicit and Implicit Structures for Targeted Sentiment Analysis. Hao Li, Wei Lu. (EMNLP 2019) [paper][code] - EI
  • Exploiting BERT for End-to-End Aspect-based Sentiment Analysis. Xin Li, Lidong Bing, Wenxuan Zhang, Wai Lam. (EMNLP 2019) [paper][code] - BERT-E2E-ABSA
  • Transferable End-to-End Aspect-based Sentiment Analysis with Selective Adversarial Learning. Zheng Li, Xin Li, Ying Wei, Lidong Bing, Yu Zhang, Qiang Yang. (EMNLP 2019) [paper][code] - Transferable-E2E-ABSA
  • Knowing What, How and Why: A Near Complete Solution for Aspect-based Sentiment Analysis. Haiyun Peng, Lu Xu, Lidong Bing, Fei Huang, Wei Lu, Luo Si. (AAAI 2020) [paper][data] - ASTE
  • Open-Domain Targeted Sentiment Analysis via Span-Based Extraction and Classification. Minghao Hu, Yuxing Peng, Zhen Huang, Dongsheng Li, Yiwei Lv. (ACL 2019) [paper][code] - SpanABSA
  • Relation-Aware Collaborative Learning for Unified Aspect-Based Sentiment Analysis. Zhuang Chen, Tieyun Qian. (ACL 2020) [paper][code] - RACL
  • Label Correction Model for Aspect-based Sentiment Analysis. Qianlong Wang, Jiangtao Ren. (COLING 2020) [paper]
  • Aspect-Category based Sentiment Analysis with Hierarchical Graph Convolutional Network. Hongjie Cai, Yaofeng Tu, Xiangsheng Zhou, Jianfei Yu, Rui Xia. (COLING 2020) [paper]
  • Joint Aspect Extraction and Sentiment Analysis with Directional Graph Convolutional Networks. Guimin Chen, Yuanhe Tian, Yan Song. (COLING 2020) [paper] - D-GCN

Aspect-Opinion Pair Extraction

  • Target-oriented Opinion Words Extraction with Target-fused Neural Sequence Labeling. Zhifang Fan, Zhen Wu, Xin-Yu Dai, Shujian Huang, Jiajun Chen. (NAACL 2019) [paper][data] - TOWE
  • Latent Opinions Transfer Network for Target-Oriented Opinion Words Extraction. Latent Opinions Transfer Network for Target-Oriented Opinion Words Extraction. (AAAI 2020) [paper][code]
  • Synchronous Double-channel Recurrent Network for Aspect-Opinion Pair Extraction. Shaowei Chen, Jie Liu, Yu Wang, Wenzheng Zhang, Ziming Chi. (ACL 2020) [paper][code] - AOPE SDRN
  • SpanMlt: A Span-based Multi-Task Learning Framework for Pair-wise Aspect and Opinion Terms Extraction. He Zhao, Longtao Huang, Rong Zhang, Quan Lu, Hui Xue. (ACL 2020) [paper]
  • Syntactically Aware Cross-Domain Aspect and Opinion Terms Extraction. Oren Pereg, Daniel Korat, Moshe Wasserblat. (COLING 2020) [paper]

Emotion-Cause Pair Extraction

  • Emotion-Cause Pair Extraction: A New Task to Emotion Analysis in Texts. Rui Xia, Zixiang Ding. (ACL 2019) [paper][code]
  • ECPE-2D: Emotion-Cause Pair Extraction based on Joint Two-Dimensional Representation, Interaction and Prediction. Zixiang Ding, Rui Xia, Jianfei Yu. (ACL 2020) [paper][code]
  • Effective Inter-Clause Modeling for End-to-End Emotion-Cause Pair Extraction. Penghui Wei, Jiahao Zhao, Wenji Mao. (ACL 2020) [paper][code]
  • Transition-based Directed Graph Construction for Emotion-Cause Pair Extraction. Chuang Fan, Chaofa Yuan, Jiachen Du, Lin Gui, Min Yang, Ruifeng Xu. (ACL 2020) [paper][code]

Dataset

  • SemEval-2014 Task 4: Aspect Based Sentiment Analysis. Maria Pontiki, Dimitris Galanis, John Pavlopoulos, Harris Papageorgiou, Ion Androutsopoulos, Suresh Manandhar. [paper][preprocessed data 1][preprocessed data 2] - Restaurants14 & Laptop14
  • Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis. Xiaoyu Xing, Zhijing Jin, Di Jin, Bingning Wang, Qi Zhang, Xuanjing Huang. (EMNLP 2020) [paper] [data] -ARTS (Challenge set for SemEval14)
  • Adaptive Recursive Neural Network for Target-dependent Twitter Sentiment Classification. Li Dong, Furu Wei, Chuanqi Tan, Duyu Tang, Ming Zhou, Ke Xu. (ACL 2014) [paper][preprocessed data] - Twitter for ATSC
  • Open Domain Targeted Sentiment. Margaret Mitchell, Jacqui Aguilar, Theresa Wilson, Benjamin Van Durme. (EMNLP 2013) [paper][data]
  • SemEval-2015 Task 12: Aspect Based Sentiment Analysis. Maria Pontiki, Dimitris Galanis, Haris Papageorgiou, Suresh Manandhar, Ion Androutsopoulos. [paper][data]
  • SemEval-2016 Task 5: Aspect Based Sentiment Analysis. Maria Pontiki, Dimitris Galanis, Haris Papageorgiou, Ion Androutsopoulos, Suresh Manandhar, Mohammad Al-Smadi, Mahmoud Al-Ayyoub, Yanyan Zhao, Bing Qin, Orphée De Clercq, Véronique Hoste, Marianna Apidianaki, Xavier Tannier, Natalia V. Loukachevitch, Evgeniy V. Kotelnikov, Núria Bel, Salud María Jiménez Zafra, Gülsen Eryigit. [paper][data]
  • SentiHood: Targeted Aspect Based Sentiment Analysis Dataset for Urban Neighbourhoods. Marzieh Saeidi, Guillaume Bouchard, Maria Liakata, Sebastian Riedel. (COLING 2016) [paper][data] - LSTM-LOC
  • Target-oriented Opinion Words Extraction with Target-fused Neural Sequence Labeling. Zhifang Fan, Zhen Wu, Xin-Yu Dai, Shujian Huang, Jiajun Chen. (NAACL 2019) [paper][data] - TOWE
  • A Challenge Dataset and Effective Models for Aspect-Based Sentiment Analysis. Qingnan Jiang, Lei Chen, Ruifeng Xu, Xiang Ao, Min Yang. (EMNLP 2019) [paper][data] - MAMS

Normal Sentiment Analysis Dataset (Coarse-grained)

  • Emotion Corpus Construction Based on Selection from Hashtags. Minglei Li, Yunfei Long, Qin Lu, Wenjie Li. (LREC 2016) [paper][data]

Survey & Review & Tutorial

  • Sentiment Analysis and Opinion Mining. Bing Liu. (AAAI 2011 Tutorial) [slide]
  • Deep Learning for Aspect-Based Sentiment Analysis: A Comparative Review. Hai Ha Do, P. W. C. Prasad, Angelika Maag, Abeer Alsadoon. (ESWA 2019) [paper]
  • Deep Learning for Aspect-Level Sentiment Classification: Survey, Vision, and Challenges. Jie Zhou, Jimmy Xiangji Huang, Qin Chen, Qinmin Vivian Hu, Tingting Wang, Liang He. (IEEE Access 2019) [paper]
  • Issues and Challenges of Aspect-based Sentiment Analysis: A Comprehensive Survey. Ambreen Nazir, Yuan Rao, Lianwei Wu, Ling Sun. (IEEE-TAC 2020) [paper]

Others

  • SKEP: Sentiment Knowledge Enhanced Pre-training for Sentiment Analysis. Hao Tian, Can Gao, Xinyan Xiao, Hao Liu, Bolei He, Hua Wu, Haifeng Wang, Feng Wu. (ACL 2020) [paper]
  • PoD: Positional Dependency-Based Word Embedding for Aspect Term Extraction. Yichun Yin, Chenguang Wang, Ming Zhang. (COLING 2020) [paper]
  • Understanding Pre-trained BERT for Aspect-based Sentiment Analysis. Hu Xu, Lei Shu, Philip Yu, Bing Liu. (COLING 2020) [paper]

Repositories/Resources

Posts

Chinese

More Repositories

1

ATPapers

Worth-reading papers and related resources on attention mechanism, Transformer and pretrained language model (PLM) such as BERT. 值得一读的注意力机制、Transformer和预训练语言模型论文与相关资源集合
131
star
2

MatchPapers

Worth-reading papers and related awesome resources on matching task. 值得一读的匹配任务相关论文与资源集合
74
star
3

nlp_resource

个人所需整理的自然语言处理资源集合
69
star
4

tianchi_ruijin_knowledge_graph

天池瑞金医院MMC人工智能辅助构建知识图谱大赛初赛,糖尿病相关医疗命名实体识别,基于pycrfsuite实现。We provide a solution for preliminary contest of Tianchi Ruijin Hospital MMC Artificial Intelligence-Assisted Knowledge Graph Competition , and the task is diabetes-related clinical named entity recognition. We implemented it based on pycrfsuite.
Python
69
star
5

NERPapers

Worth-reading papers and related resources on Named Entity Recognition (NER). 值得一读的命名实体识别论文与相关资源集合
38
star
6

MRCPapers

Worth-reading paper list and other awesome resources on Machine Reading Comprehension (MRC) and textual Question Answering (QA). 机器阅读理解与文本问答领域值得一读的论文列表和其他相关资源集合
27
star
7

chip2019_task2_question_pairs_matching

CHIP 2019平安医疗科技疾病问答迁移学习比赛baseline,rank7
Python
26
star
8

chip2018_task2_question_pairs_matching

CHIP2018评测任务2,平安医疗科技智能患者健康咨询问句匹配大赛baseline,BiLSTM+特征工程计算相似性,10折交叉验证平均投票做bagging,F1值0.83左右,rank16。
Python
19
star
9

SUMPapers

Worth-reading papers and related awesome resources on text summarization. 值得一读的文本摘要论文与相关资源集合
9
star
10

TCPapers

Worth-reading papers and related resources on text classification. 文本分类领域值得一读的论文与相关资源集合
6
star
11

softmax_loss_variants_pytorch

The PyTorch implementation of variants of loss for text classification & text matching. 基于PyTorch实现的文本分类与文本匹配损失函数变种
6
star
12

naive_financial_data_analysis

个人金融数据分析代码与项目集合
Python
3
star
13

OpenTC

Exploring various text classification models based on PyTorch. 基于PyTorch探索各种文本分类模型
Python
3
star
14

alexnet_pytorch

alexnet implementation with pytorch
Python
2
star
15

ccf_bdci_2019_negative_entity_baseline

CCF BDCI 2019 金融信息负面及主体判定baseline:以ABSA的方式做
Python
2
star
16

DSPapers

Worth reading papers and awesome related resources on dialogue system. 对话系统领域值得一读的论文与优秀相关资源集合
2
star
17

nlp_corpus

A list of NLP corpus, datasets and other language toolkits
1
star
18

OpenMRC

An Open-Source Toolkit for Machine Reading Comprehension and Textual Question Answering Based on PyTorch. 基于PyTorch的机器阅读理解与文本问答开源工具
1
star