• Stars
    star
    107
  • Rank 323,587 (Top 7 %)
  • Language
    Python
  • License
    MIT License
  • Created over 3 years ago
  • Updated 4 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

PyTorch implementation for COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction (CVPR 2021)

Completer: Incomplete Multi-view Clustering via Contrastive Prediction

This repo contains the code and data of our CVPR'2021 paper Completer: Incomplete Multi-view Clustering via Contrastive Prediction and that of our IEEE TPAMI'2022 paper Dual Contrastive Prediction for Incomplete Multi-view Representation Learning.

COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction

Dual Contrastive Prediction for Incomplete Multi-view Representation Learning

Requirements

pytorch==1.2.0

numpy>=1.19.1

scikit-learn>=0.23.2

munkres>=1.1.4

Configuration

The hyper-parameters, the training options (including the missing rate) are defined in configure.py.

Datasets

The Caltech101-20, LandUse-21, and Scene-15 datasets are placed in "data" folder. The NoisyMNIST dataset could be downloaded from cloud.

Usage

The code includes:

  • an example implementation of the model,
  • an example clustering task for different missing rates.
python run.py --dataset 0 --devices 0 --print_num 100 --test_time 5

You can get the following output:

Epoch : 100/500 ===> Reconstruction loss = 0.2819===> Reconstruction loss = 0.0320 ===> Dual prediction loss = 0.0199  ===> Contrastive loss = -4.4813e+02 ===> Loss = -4.4810e+02
view_concat {'kmeans': {'AMI': 0.5969, 'NMI': 0.6106, 'ARI': 0.6044, 'accuracy': 0.5813, 'precision': 0.4408, 'recall': 0.3835, 'f_measure': 0.3921}}
Epoch : 200/500 ===> Reconstruction loss = 0.2590===> Reconstruction loss = 0.0221 ===> Dual prediction loss = 0.0016  ===> Contrastive loss = -4.4987e+02 ===> Loss = -4.4984e+02
view_concat {'kmeans': {'AMI': 0.6575, 'NMI': 0.6691, 'ARI': 0.6974, 'accuracy': 0.6593, 'precision': 0.4551, 'recall': 0.4222, 'f_measure': 0.4096}}
Epoch : 300/500 ===> Reconstruction loss = 0.2450===> Reconstruction loss = 0.0207 ===> Dual prediction loss = 0.0011  ===> Contrastive loss = -4.5115e+02 ===> Loss = -4.5112e+02
view_concat {'kmeans': {'AMI': 0.6875, 'NMI': 0.6982, 'ARI': 0.8679, 'accuracy': 0.7439, 'precision': 0.4586, 'recall': 0.444, 'f_measure': 0.4217}}
Epoch : 400/500 ===> Reconstruction loss = 0.2391===> Reconstruction loss = 0.0210 ===> Dual prediction loss = 0.0007  ===> Contrastive loss = -4.5013e+02 ===> Loss = -4.5010e+02
view_concat {'kmeans': {'AMI': 0.692, 'NMI': 0.7027, 'ARI': 0.8736, 'accuracy': 0.7456, 'precision': 0.4601, 'recall': 0.4451, 'f_measure': 0.4257}}
Epoch : 500/500 ===> Reconstruction loss = 0.2281===> Reconstruction loss = 0.0187 ===> Dual prediction loss = 0.0008  ===> Contrastive loss = -4.5018e+02 ===> Loss = -4.5016e+02
view_concat {'kmeans': {'AMI': 0.6912, 'NMI': 0.7019, 'ARI': 0.8707, 'accuracy': 0.7464, 'precision': 0.4657, 'recall': 0.4464, 'f_measure': 0.4265}}

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{lin2021completer,
   title={COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction},
   author={Lin, Yijie and Gou, Yuanbiao and Liu, Zitao and Li, Boyun and Lv, Jiancheng and Peng, Xi},
   booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
   month={June},
   year={2021}
}

More Repositories

1

2022-CVPR-AirNet

PyTorch implementation for All-In-One Image Restoration for Unknown Corruption (AirNet) (CVPR 2022)
Python
163
star
2

2024-ICLR-Norton

Multi-granularity Correspondence Learning from Long-term Noisy Videos [ICLR 2024, Oral]
Python
107
star
3

Awesome-All-In-One-Image-Restoration

This is a summary of research on All-In-One Image/Video Restoration. There may be omissions. If anything is missing please get in touch with us. Our emails: [email protected]; [email protected]; [email protected]; [email protected]
98
star
4

2021-NeurIPS-NCR

Python
59
star
5

2021-IJCV-YOLY

PyTorch implementation for You Only Look Yourself: Unsupervised and Untrained Single Image Dehazing Neural Network (YOLY) (IJCV 2021)
Python
57
star
6

2021-CVPR-MvCLN

PyTorch implementation for Partially View-aligned Representation Learning with Noise-robust Contrastive Loss (CVPR 2021)
Python
46
star
7

2023-CVPR-CODE

PyTorch implementation for Comprehensive and Delicate: An Efficient Transformer for Image Restoration (CVPR 2023).
Python
43
star
8

2022-TPAMI-DCP

PyTorch implementation for Dual Contrastive Prediction for Incomplete Multi-view Representation Learning (TPAMI'22)
Python
43
star
9

2019-ICML-COMIC

COMIC: Multi-view Clustering Without Parameter Selection, International Conference on Machine Learning (ICML’19)
Python
34
star
10

2022-TPAMI-SURE

PyTorch implementation for Robust Multi-view Clustering with Incomplete Information (TPAMI 2022).
Python
33
star
11

2024-ICML-TAC

Code for the paper "Image Clustering with External Guidance" (ICML 2024)
Python
32
star
12

2022-CVPR-DART

PyTorch implementation for Learning with Twin Noisy Labels for Visible-Infrared Person Re-Identification (CVPR 2022).
Python
30
star
13

Awesome-Noisy-Correspondence

This is a summary of research on noisy correspondence. There may be omissions. If anything is missing please get in touch with us. Our emails: [email protected] [email protected] [email protected]
29
star
14

2024-ICLR-READ

Pytorch implementation of "Test-time Adaption against Multi-modal Reliability Bias".
Python
26
star
15

2022-IJCV-TCL

Python
18
star
16

2020-NeurIPS-CLEARER

Python
17
star
17

2023-CVPR-FCMI

Python
16
star
18

scBridge

Python
16
star
19

2022-JMLR-TELL

Python
14
star
20

2024-AAAI-DIVIDE

Official implementation of "Decoupled Contrastive Multi-View Clustering with High-Order Random Walks", [AAAI 2024].
Python
13
star
21

2024-TIP-CREAM

PyTorch implementation for Cross-modal Retrieval with Noisy Correspondence via Consistency Refining and Mining (TIP 2024)
Python
12
star
22

2022-NeurIPS-MSANet

Multi-Scale Adaptive Network for Single Image Denoising (NeurIPS 2022)
10
star
23

2023-IJCAI-ProImp

PyTorch implementation for Incomplete Multi-view Clustering via Prototype-based Imputation (IJCAI 2023)
Python
9
star
24

2023-CVPR-FPL

Python
8
star
25

2019-TIFS-AnomalyNet

AnomalyNet: An Anomaly Detection Network for Video Surveillance, IEEE Trans Information Forensics and Security 2019
Python
8
star
26

2017-TCYB-L2Graph

Constructing the L2-Graph for Robust Subspace Learning and Subspace Clustering, IEEE Trans Cybernetics 2017
MATLAB
6
star
27

2021-TIP-MvLNet

Python
6
star
28

2024-IJCV-LCNL

Python
5
star
29

2016-TNNLS-BOE

Bag of Events: An Efficient Probability-Based Feature Extraction Method for AER Image Sensors, IEEE Trans Neural Networks and Learning Systems 2016
C
3
star
30

2018-TNNLS-TransferHashing

Transfer Hashing: From Shallow To Deep, IEEE Trans Neural Networks and Learning Systems 2018
MATLAB
3
star
31

2013-CVPR-SSSC

Scalable Sparse Subspace Clustering, CVPR2013
MATLAB
3
star
32

2023-TPAMI-SMILE

PyTorch implementation for Semantic Invariant Multi-view Clustering with Fully Incomplete Information (SMILE), TPAMI 2023.
Python
3
star
33

2015-AAAI-TRR

Robust Subspace Clustering via Thresholding Ridge Regression, AAAI15
MATLAB
2
star
34

2016-TNNLS-SRSC

A Unified Framework for Representation-based Subspace Clustering of Out-of-sample and Large-scale Data, IEEE Trans Neural Networks and Learning Systems 2016
MATLAB
2
star
35

2020-AAAI-SMLN

1
star
36

2018-TIE-MMFA

Python
1
star
37

2018-AAAI-SC2Net

SC2Net: Sparse LSTMs for Sparse Coding, the 32th AAAI Conference on Artificial Intelligence (AAAI'18)
Python
1
star
38

2023-ICCV-CVCL

Python
1
star
39

2024-TPAMI-NEVER

1
star
40

2015-KBS-LrrSPM

Fast Low-rank Representation based Spatial Pyramid Matching for Image Classification, KBS2015
MATLAB
1
star