• Stars
    star
    413
  • Rank 104,801 (Top 3 %)
  • Language
    C++
  • License
    Apache License 2.0
  • Created about 5 years ago
  • Updated over 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A unofficial pytorch implementation of PAN(PSENet2): Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Requirements

  • pytorch 1.1+
  • torchvision 0.3+
  • pyclipper
  • opencv3
  • gcc 4.9+

Download

PAN_resnet18_FPEM_FFM and PAN_resnet18_FPEM_FFM on icdar2015:

the updated model(resnet18:78.8,shufflenetv2: 72.4,lr:le-3) is not the best model

google drive

Data Preparation

train: prepare a text in the following format, use '\t' as a separator

/path/to/img.jpg path/to/label.txt
...

val: use a folder

img/ store img
gt/ store gt file

Train

  1. config the train_data_path,val_data_pathin config.json
  2. use following script to run
python3 train.py

Test

eval.py is used to test model on test dataset

  1. config model_path, img_path, gt_path, save_path in eval.py
  2. use following script to test
python3 eval.py

Predict

predict.py is used to inference on single image

  1. config model_path, img_path, in predict.py
  2. use following script to predict
python3 predict.py

The project is still under development.

Performance

ICDAR 2015

only train on ICDAR2015 dataset

Method image size (short size) learning rate Precision (%) Recall (%) F-measure (%) FPS
paper(resnet18) 736 x x x 80.4 26.1
my (ShuffleNetV2+FPEM_FFM+pse扩张) 736 1e-3 81.72 66.73 73.47 24.71 (P100)
my (resnet18+FPEM_FFM+pse扩张) 736 1e-3 84.93 74.09 79.14 21.31 (P100)
my (resnet50+FPEM_FFM+pse扩张) 736 1e-3 84.23 76.12 79.96 14.22 (P100)
my (ShuffleNetV2+FPEM_FFM+pse扩张) 736 1e-4 75.14 57.34 65.04 24.71 (P100)
my (resnet18+FPEM_FFM+pse扩张) 736 1e-4 83.89 69.23 75.86 21.31 (P100)
my (resnet50+FPEM_FFM+pse扩张) 736 1e-4 85.29 75.1 79.87 14.22 (P100)
my (resnet18+FPN+pse扩张) 736 1e-3 76.50 74.70 75.59 14.47 (P100)
my (resnet50+FPN+pse扩张) 736 1e-3 71.82 75.73 73.72 10.67 (P100)
my (resnet18+FPN+pse扩张) 736 1e-4 74.19 72.34 73.25 14.47 (P100)
my (resnet50+FPN+pse扩张) 736 1e-4 78.96 76.27 77.59 10.67 (P100)

examples

todo

  • MobileNet backbone

  • ShuffleNet backbone

reference

  1. https://arxiv.org/pdf/1908.05900.pdf
  2. https://github.com/WenmuZhou/PSENet.pytorch

If this repository helps you,please star it. Thanks.

More Repositories

1

PytorchOCR

基于Pytorch的OCR工具库,支持常用的文字检测和识别算法
Python
1,345
star
2

DBNet.pytorch

A pytorch re-implementation of Real-time Scene Text Detection with Differentiable Binarization
Python
939
star
3

OCR_DataSet

收集并整理有关OCR的数据集并统一标注格式,以便实验需要
Python
856
star
4

PSENet.pytorch

A pytorch re-implementation of PSENet: Shape Robust Text Detection with Progressive Scale Expansion Network
C++
462
star
5

TableGeneration

通过浏览器渲染生成表格图像
Python
185
star
6

flask_pytorch

using flask to run pytorch model
Python
48
star
7

crnn.gluon

A gluon re-implementation of Convolutional recurrent network in gluon
Python
21
star
8

reprod_log

Python
16
star
9

Segmentation-Free_OCR

recognize chinese and english without segmentation
Python
11
star
10

Torch_Quant_Demo

一个使用torch进行量化训练的demo
Python
9
star
11

ctpn.pytorch

Python
9
star
12

crypto

Python
7
star
13

dl_docker

用于深度学习的docker环境,cuda支持cuda10.1和cuda10.2,框架支持各种框架
Dockerfile
6
star
14

IcdarToCOCO

Python
5
star
15

gluon_mnist

learning gluon with mnist dataset
Python
5
star
16

mxnet_cifar10

Python
4
star
17

crnn.paddle

Python
4
star
18

leetcode

learning data struct with python
Jupyter Notebook
4
star
19

UCDIR.paddle

Python
4
star
20

TableMASTER_mmocr

Python
3
star
21

rust_python

use rust speed up python
Rust
3
star
22

pytorch_mnist

learning pytorch with mnist dataset
Python
3
star
23

WenmuZhou.github.io

个人博客
HTML
2
star
24

keras_mnist

learning keras with mnist
Python
2
star
25

gitment-comments

2
star
26

DABNet_Paddle

a paddle reproduce of DABNet
Python
1
star
27

simple_nlp

Python
1
star