• Stars
    star
    462
  • Rank 94,832 (Top 2 %)
  • Language
    C++
  • License
    GNU General Publi...
  • Created over 5 years ago
  • Updated over 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A pytorch re-implementation of PSENet: Shape Robust Text Detection with Progressive Scale Expansion Network

Shape Robust Text Detection with Progressive Scale Expansion Network

Requirements

  • pytorch 1.1
  • torchvision 0.3
  • pyclipper
  • opencv3
  • gcc 4.9+

Update

20190401

  1. add author loss, the results are compared in Performance

Download

resnet50 and resnet152 model on icdar 2015:

  1. bauduyun extract code: rxjf

  2. google drive

Data Preparation

follow icdar15 dataset format

img
│   1.jpg
│   2.jpg   
│		...
gt
│   gt_1.txt
│   gt_2.txt
|		...

Train

  1. config the trainroot,testrootin config.py
  2. use following script to run
python3 train.py

Test

eval.py is used to test model on test dataset

  1. config model_path, data_path, gt_path, save_path in eval.py
  2. use following script to test
python3 eval.py

Predict

predict.py is used to inference on single image

  1. config model_path, img_path, gt_path, save_path in predict.py
  2. use following script to predict
python3 predict.py

Performance

ICDAR 2015

only train on ICDAR2015 dataset with single NVIDIA 1080Ti

my implementation with my loss use adam and warm_up

Method Precision (%) Recall (%) F-measure (%) FPS(1080Ti)
PSENet-1s with resnet50 batch 8 81.13 77.03 79.03 1.76
PSENet-2s with resnet50 batch 8 81.36 77.13 79.18 3.55
PSENet-4s with resnet50 batch 8 81.00 76.55 78.71 4.43
PSENet-1s with resnet152 batch 4 85.45 80.06 82.67 1.48
PSENet-2s with resnet152 batch 4 85.42 80.11 82.68 2.56
PSENet-4s with resnet152 batch 4 83.93 79.00 81.39 2.99

my implementation with my loss use adam and MultiStepLR

Method Precision (%) Recall (%) F-measure (%) FPS(1080Ti)
PSENet-1s with resnet50 batch 8 83.39 79.29 81.29 1.76
PSENet-2s with resnet50 batch 8 83.22 79.05 81.08 3.55
PSENet-4s with resnet50 batch 8 82.57 78.23 80.34 4.43
PSENet-1s with resnet152 batch 4 85.33 79.87 82.51 1.48
PSENet-2s with resnet152 batch 4 85.36 79.73 82.45 2.56
PSENet-4s with resnet152 batch 4 83.95 78.86 81.33 2.99

my implementation with author loss use adam and warm_up

Method Precision (%) Recall (%) F-measure (%) FPS(1080Ti)
PSENet-1s with resnet50 batch 8 83.33 77.75 80.44 1.76
PSENet-2s with resnet50 batch 8 83.01 77.66 80.24 3.55
PSENet-4s with resnet50 batch 8 82.38 76.98 79.59 4.43
PSENet-1s with resnet152 batch 4 85.16 79.87 82.43 1.48
PSENet-2s with resnet152 batch 4 85.03 79.63 82.24 2.56
PSENet-4s with resnet152 batch 4 84.53S 79.20 81.77 2.99

my implementation with author loss use adam and MultiStepLR

Method Precision (%) Recall (%) F-measure (%) FPS(1080Ti)
PSENet-1s with resnet50 batch 8 83.93 79.48 81.65 1.76
PSENet-2s with resnet50 batch 8 84.17 79.63 81.84 3.55
PSENet-4s with resnet50 batch 8 83.50 78.71 81.04 4.43
PSENet-1s with resnet152 batch 4 85.16 79.58 82.28 1.48
PSENet-2s with resnet152 batch 4 85.13 79.15 82.03 2.56
PSENet-4s with resnet152 batch 4 84.40 78.71 81.46 2.99

official implementation use SGD and StepLR

Method Precision (%) Recall (%) F-measure (%) FPS(1080Ti)
PSENet-1s with resnet50 batch 8 84.15 80.26 82.16 1.76
PSENet-2s with resnet50 batch 8 83.61 79.82 81.67 3.72
PSENet-4s with resnet50 batch 8 81.90 78.23 80.03 4.51
PSENet-1s with resnet152 batch 4 82.87 78.76 80.77 1.53
PSENet-2s with resnet152 batch 4 82.33 78.33 80.28 2.61
PSENet-4s with resnet152 batch 4 81.19 77.13 79.11 3.00

examples

reference

  1. https://github.com/liuheng92/tensorflow_PSENet
  2. https://github.com/whai362/PSENet

More Repositories

1

PytorchOCR

基于Pytorch的OCR工具库,支持常用的文字检测和识别算法
Python
1,345
star
2

DBNet.pytorch

A pytorch re-implementation of Real-time Scene Text Detection with Differentiable Binarization
Python
939
star
3

OCR_DataSet

收集并整理有关OCR的数据集并统一标注格式,以便实验需要
Python
856
star
4

PAN.pytorch

A unofficial pytorch implementation of PAN(PSENet2): Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network
C++
413
star
5

TableGeneration

通过浏览器渲染生成表格图像
Python
185
star
6

flask_pytorch

using flask to run pytorch model
Python
48
star
7

crnn.gluon

A gluon re-implementation of Convolutional recurrent network in gluon
Python
21
star
8

reprod_log

Python
16
star
9

Segmentation-Free_OCR

recognize chinese and english without segmentation
Python
11
star
10

Torch_Quant_Demo

一个使用torch进行量化训练的demo
Python
9
star
11

ctpn.pytorch

Python
9
star
12

crypto

Python
7
star
13

dl_docker

用于深度学习的docker环境,cuda支持cuda10.1和cuda10.2,框架支持各种框架
Dockerfile
6
star
14

IcdarToCOCO

Python
5
star
15

gluon_mnist

learning gluon with mnist dataset
Python
5
star
16

mxnet_cifar10

Python
4
star
17

crnn.paddle

Python
4
star
18

leetcode

learning data struct with python
Jupyter Notebook
4
star
19

UCDIR.paddle

Python
4
star
20

TableMASTER_mmocr

Python
3
star
21

rust_python

use rust speed up python
Rust
3
star
22

pytorch_mnist

learning pytorch with mnist dataset
Python
3
star
23

WenmuZhou.github.io

个人博客
HTML
2
star
24

keras_mnist

learning keras with mnist
Python
2
star
25

gitment-comments

2
star
26

DABNet_Paddle

a paddle reproduce of DABNet
Python
1
star
27

simple_nlp

Python
1
star