• Stars
    star
    296
  • Rank 140,464 (Top 3 %)
  • Language
    Jupyter Notebook
  • Created over 7 years ago
  • Updated over 6 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Style Transfer as Optimal Transport

Style Transfer as Optimal Transport

An algorithm that transfers the distribution of visual characteristics, or style, of a reference image onto a subject image via an Optimal Transport plan.

input-content

How it Works:

tl;dr - Passes a subject and style image through the convolution layers of the vgg19 network. Extracts probabalistic descriptions (first two moments) of the convolution filter activations. Calculates L2-Wasserstein distance between these probability distributions and then modifies the subject image optimally to minimize this distance.

Running

Requires:

  1. Python 3 (w/ NumPy and PIL)
  2. Tensorflow (tested w/ version 1.3)
  3. 'vgg_conv.npy' binary (115.5 MB) which contains calibrated convolution filters from vgg19 network. Can be downloaded here [md5sum: bf8a930fec201a0a2ade13d3f7274d0e]

Basic Usage from Command Line:

python basic_styletrans.py --subject media/wave_small.jpg --style media/kngwa_small.jpg --output media/wave_kngwa.jpg --vggnet vgg_conv.npy

Output:

loss: 118,500,040.00
ALL DONE 
post clip | time: 49.0 final loss: 2,771,486.50
synthesized image saved: media/wave_kngwa.jpg

input-content