• Stars
    star
    217
  • Rank 182,446 (Top 4 %)
  • Language
    Python
  • License
    Other
  • Created over 2 years ago
  • Updated over 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

The PyTorch implementation for paper "Neural Texture Extraction and Distribution for Controllable Person Image Synthesis" (CVPR2022 Oral)

ArXiv | Get Start

Neural-Texture-Extraction-Distribution

The PyTorch implementation for our paper "Neural Texture Extraction and Distribution for Controllable Person Image Synthesis" (CVPR2022 Oral)

We propose a Neural-Texture-Extraction-Distribution operation for controllable person image synthesis. Our model can be used to control the pose and appearance of a reference image:

  • Pose Control

  • Appearance Control

News

  • 2022.6.25 Web demo available through Replicate:

    πŸš€ Demo and Docker image on Replicate

  • 2022.4.30 Colab demos are provided for quick exploration.

  • 2022.4.28 Code for PyTorch is available now!

Installation

Requirements

  • Python 3
  • PyTorch 1.7.1
  • CUDA 10.2

Conda Installation

# 1. Create a conda virtual environment.
conda create -n NTED python=3.6
conda activate NTED
conda install -c pytorch pytorch=1.7.1 torchvision cudatoolkit=10.2

# 2. Clone the Repo and Install dependencies
git clone --recursive https://github.com/RenYurui/Neural-Texture-Extraction-Distribution.git
pip install -r requirements.txt

# 3. Install mmfashion (for appearance control only)
pip install mmcv==0.5.1
pip install pycocotools==2.0.4
cd ./scripts
chmod +x insert_mmfashion2mmdetection.sh
./insert_mmfashion2mmdetection.sh
cd ../third_part/mmdetection
pip install -v -e .

Demo

Several demos are provided. Please first download the resources by runing

cd scripts
./download_demos.sh

Pose Transfer

Run the following code for the results.

PATH_TO_OUTPUT=./demo_results
python demo.py \
--config ./config/fashion_512.yaml \
--which_iter 495400 \
--name fashion_512 \
--file_pairs ./txt_files/demo.txt \
--input_dir ./demo_images \
--output_dir $PATH_TO_OUTPUT

Appearance Control

Meanwhile, run the following code for the appearance control demo.

python appearance_control.py \
--config ./config/fashion_512.yaml \
--name fashion_512 \
--which_iter 495400 \
--input_dir ./demo_images \
--file_pairs ./txt_files/appearance_control.txt

Colab Demo

Please check the Colab Demos for pose control and appearance control.

Dataset

  • Download img_highres.zip of the DeepFashion Dataset from In-shop Clothes Retrieval Benchmark.

  • Unzip img_highres.zip. You will need to ask for password from the dataset maintainers. Then rename the obtained folder as img and put it under the ./dataset/deepfashion directory.

  • We split the train/test set following GFLA. Several images with significant occlusions are removed from the training set. Download the train/test pairs and the keypoints pose.zip extracted with Openpose by runing:

    cd scripts
    ./download_dataset.sh

    Or you can download these files manually:

    • Download the train/test pairs from Google Drive including train_pairs.txt, test_pairs.txt, train.lst, test.lst. Put these files under the ./dataset/deepfashion directory.
    • Download the keypoints pose.rar extracted with Openpose from Google Driven. Unzip and put the obtained floder under the ./dataset/deepfashion directory.
  • Run the following code to save images to lmdb dataset.

    python -m scripts.prepare_data \
    --root ./dataset/deepfashion \
    --out ./dataset/deepfashion

Training

This project supports multi-GPUs training. The following code shows an example for training the model with 512x352 images using 4 GPUs.

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch \
--nproc_per_node=4 \
--master_port 1234 train.py \
--config ./config/fashion_512.yaml \
--name $name_of_your_experiment

All configs for this experiment are saved in ./config/fashion_512.yaml. If you change the number of GPUs, you may need to modify the batch_size in ./config/fashion_512.yaml to ensure using a same batch_size.

Inference

  • Download the trained weights for 512x352 images and 256x176 images. Put the obtained checkpoints under ./result/fashion_512 and ./result/fashion_256 respectively.

  • Run the following code to evaluate the trained model:

    # run evaluation for 512x352 images
    python -m torch.distributed.launch \
    --nproc_per_node=1 \
    --master_port 12345 inference.py \
    --config ./config/fashion_512.yaml \
    --name fashion_512 \
    --no_resume \
      --which_iter 495400 \
    --output_dir ./result/fashion_512/inference 
    
    # run evaluation for 256x176 images
    python -m torch.distributed.launch \
    --nproc_per_node=1 \
    --master_port 12345 inference.py \
    --config ./config/fashion_256.yaml \
    --name fashion_256 \
    --no_resume \
    --which_iter 495400 \
    --output_dir ./result/fashion_256/inference 

The result images are save in ./result/fashion_512/inference and ./result/fashion_256/inference.