Variational Inference with adversarial learning for end-to-end Singing Voice Conversion based on VITS
- This project targets deep learning beginners, basic knowledge of Python and PyTorch are the prerequisites for this project;
- This project aims to help deep learning beginners get rid of boring pure theoretical learning, and master the basic knowledge of deep learning by combining it with practices;
- This project does not support real-time voice converting; (need to replace whisper if real-time voice converting is what you are looking for)
- This project will not develop one-click packages for other purposes;
-
6GB low minimum VRAM requirement for training
-
support for multiple speakers
-
create unique speakers through speaker mixing
-
even voices with light accompaniment can also be converted
-
F0 can be edited using Excel
AI_Elysia_LoveStory.mp4
Powered by @ShadowVap
Model properties
Feature | From | Status | Function |
---|---|---|---|
whisper | OpenAI | โ | strong noise immunity |
bigvgan | NVIDA | โ | alias and snake |
natural speech | Microsoft | โ | reduce mispronunciation |
neural source-filter | NII | โ | solve the problem of audio F0 discontinuity |
speaker encoder | โ | Timbre Encoding and Clustering | |
GRL for speaker | Ubisoft | โ | Preventing Encoder Leakage Timbre |
SNAC | Samsung | โ | One Shot Clone of VITS |
SCLN | Microsoft | โ | Improve Clone |
PPG perturbation | this project | โ | Improved noise immunity and de-timbre |
HuBERT perturbation | this project | โ | Improved noise immunity and de-timbre |
VAE perturbation | this project | โ | Improve sound quality |
MIX encoder | this project | โ | Improve conversion stability |
USP infer | this project | โ | Improve conversion stability |
due to the use of data perturbation, it takes longer to train than other projects.
USP : Unvoice and Silence with Pitch when infer
Setup Environment
-
Install PyTorch.
-
Install project dependencies
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -r requirements.txt
Note: whisper is already built-in, do not install it again otherwise it will cuase conflict and error
-
Download the Timbre Encoder: Speaker-Encoder by @mueller91, put
best_model.pth.tar
intospeaker_pretrain/
. -
Download whisper model whisper-large-v2. Make sure to download
large-v2.pt
๏ผput it intowhisper_pretrain/
. -
Download hubert_soft model๏ผput
hubert-soft-0d54a1f4.pt
intohubert_pretrain/
. -
Download pitch extractor crepe full๏ผput
full.pth
intocrepe/assets
.Note: crepe full.pth is 84.9 MB, not 6kb
-
Download pretrain model sovits5.0.pretrain.pth, and put it into
vits_pretrain/
.python svc_inference.py --config configs/base.yaml --model ./vits_pretrain/sovits5.0.pretrain.pth --spk ./configs/singers/singer0001.npy --wave test.wav
Dataset preparation
Necessary pre-processing:
- Separate vocie and accompaniment with UVR (skip if no accompaniment)
- Cut audio input to shorter length with slicer, whisper takes input less than 30 seconds.
- Manually check generated audio input, remove inputs shorter than 2 seconds or with obivous noise.
- Adjust loudness if necessary, recommand Adobe Audiiton.
- Put the dataset into the
dataset_raw
directory following the structure below.
dataset_raw
โโโโspeaker0
โ โโโโ000001.wav
โ โโโโ...
โ โโโโ000xxx.wav
โโโโspeaker1
โโโโ000001.wav
โโโโ...
โโโโ000xxx.wav
Data preprocessing
python svc_preprocessing.py -t 2
-t
: threading, max number should not exceed CPU core count, usually 2 is enough.
After preprocessing you will get an output with following structure.
data_svc/
โโโ waves-16k
โ โโโ speaker0
โ โ โโโ 000001.wav
โ โ โโโ 000xxx.wav
โ โโโ speaker1
โ โโโ 000001.wav
โ โโโ 000xxx.wav
โโโ waves-32k
โ โโโ speaker0
โ โ โโโ 000001.wav
โ โ โโโ 000xxx.wav
โ โโโ speaker1
โ โโโ 000001.wav
โ โโโ 000xxx.wav
โโโ pitch
โ โโโ speaker0
โ โ โโโ 000001.pit.npy
โ โ โโโ 000xxx.pit.npy
โ โโโ speaker1
โ โโโ 000001.pit.npy
โ โโโ 000xxx.pit.npy
โโโ hubert
โ โโโ speaker0
โ โ โโโ 000001.vec.npy
โ โ โโโ 000xxx.vec.npy
โ โโโ speaker1
โ โโโ 000001.vec.npy
โ โโโ 000xxx.vec.npy
โโโ whisper
โ โโโ speaker0
โ โ โโโ 000001.ppg.npy
โ โ โโโ 000xxx.ppg.npy
โ โโโ speaker1
โ โโโ 000001.ppg.npy
โ โโโ 000xxx.ppg.npy
โโโ speaker
โ โโโ speaker0
โ โ โโโ 000001.spk.npy
โ โ โโโ 000xxx.spk.npy
โ โโโ speaker1
โ โโโ 000001.spk.npy
โ โโโ 000xxx.spk.npy
โโโ singer
โโโ speaker0.spk.npy
โโโ speaker1.spk.npy
-
Re-sampling
- Generate audio with a sampling rate of 16000Hz in
./data_svc/waves-16k
python prepare/preprocess_a.py -w ./dataset_raw -o ./data_svc/waves-16k -s 16000
- Generate audio with a sampling rate of 32000Hz in
./data_svc/waves-32k
python prepare/preprocess_a.py -w ./dataset_raw -o ./data_svc/waves-32k -s 32000
- Generate audio with a sampling rate of 16000Hz in
-
Use 16K audio to extract pitch
python prepare/preprocess_crepe.py -w data_svc/waves-16k/ -p data_svc/pitch
-
Use 16K audio to extract ppg
python prepare/preprocess_ppg.py -w data_svc/waves-16k/ -p data_svc/whisper
-
Use 16K audio to extract hubert
python prepare/preprocess_hubert.py -w data_svc/waves-16k/ -v data_svc/hubert
-
Use 16k audio to extract timbre code
python prepare/preprocess_speaker.py data_svc/waves-16k/ data_svc/speaker
-
Extract the average value of the timbre code for inference; it can also replace a single audio timbre in generating the training index, and use it as the unified timbre of the speaker for training
python prepare/preprocess_speaker_ave.py data_svc/speaker/ data_svc/singer
-
use 32k audio to extract the linear spectrum
python prepare/preprocess_spec.py -w data_svc/waves-32k/ -s data_svc/specs
-
Use 32k audio to generate training index
python prepare/preprocess_train.py
-
Training file debugging
python prepare/preprocess_zzz.py
Train
-
If fine-tuning based on the pre-trained model, you need to download the pre-trained model: sovits5.0.pretrain.pth. Put pretrained model under project root, change this line
pretrain: "./vits_pretrain/sovits5.0.pretrain.pth"
in
configs/base.yaml
๏ผand adjust the learning rate appropriately, eg 5e-5.batch_szie
: for GPU with 6G VRAM, 6 is the recommended value, 8 will work but step speed will be much slower. -
Start training
python svc_trainer.py -c configs/base.yaml -n sovits5.0
-
Resume training
python svc_trainer.py -c configs/base.yaml -n sovits5.0 -p chkpt/sovits5.0/sovits5.0_***.pt
-
Log visualization
tensorboard --logdir logs/
Inference
-
Export inference model: text encoder, Flow network, Decoder network
python svc_export.py --config configs/base.yaml --checkpoint_path chkpt/sovits5.0/***.pt
-
Inference
- if there is no need to adjust
f0
, just run the following command.
python svc_inference.py --config configs/base.yaml --model sovits5.0.pth --spk ./data_svc/singer/your_singer.spk.npy --wave test.wav --shift 0
- if
f0
will be adjusted manually, follow the steps:- use whisper to extract content encoding, generate
test.vec.npy
.
python whisper/inference.py -w test.wav -p test.ppg.npy
- use hubert to extract content vector, without using one-click reasoning, in order to reduce GPU memory usage
python hubert/inference.py -w test.wav -v test.vec.npy
- extract the F0 parameter to the csv text format, open the csv file in Excel, and manually modify the wrong F0 according to Audition or SonicVisualiser
python pitch/inference.py -w test.wav -p test.csv
- final inference
python svc_inference.py --config configs/base.yaml --model sovits5.0.pth --spk ./data_svc/singer/your_singer.spk.npy --wave test.wav --ppg test.ppg.npy --vec test.vec.npy --pit test.csv --shift 0
- use whisper to extract content encoding, generate
- if there is no need to adjust
-
Notes
-
when
--ppg
is specified, when the same audio is reasoned multiple times, it can avoid repeated extraction of audio content codes; if it is not specified, it will be automatically extracted; -
when
--vec
is specified, when the same audio is reasoned multiple times, it can avoid repeated extraction of audio content codes; if it is not specified, it will be automatically extracted; -
when
--pit
is specified, the manually tuned F0 parameter can be loaded; if not specified, it will be automatically extracted; -
generate files in the current directory:svc_out.wav
-
-
Arguments ref
args --config --model --spk --wave --ppg --vec --pit --shift name config path model path speaker wave input wave ppg wave hubert wave pitch pitch shift -
post by vad
python svc_inference_post.py --ref test.wav --svc svc_out.wav --out svc_out_post.wav
Creat singer
named by pure coincidence๏ผaverage -> ave -> eva๏ผeve(eva) represents conception and reproduction
python svc_eva.py
eva_conf = {
'./configs/singers/singer0022.npy': 0,
'./configs/singers/singer0030.npy': 0,
'./configs/singers/singer0047.npy': 0.5,
'./configs/singers/singer0051.npy': 0.5,
}
the generated singer file will be eva.spk.npy
.
Data set
Code sources and references
https://github.com/facebookresearch/speech-resynthesis paper
https://github.com/jaywalnut310/vits paper
https://github.com/openai/whisper/ paper
https://github.com/NVIDIA/BigVGAN paper
https://github.com/mindslab-ai/univnet paper
https://github.com/nii-yamagishilab/project-NN-Pytorch-scripts/tree/master/project/01-nsf
https://github.com/brentspell/hifi-gan-bwe
https://github.com/mozilla/TTS
https://github.com/bshall/soft-vc
https://github.com/maxrmorrison/torchcrepe
https://github.com/OlaWod/FreeVC paper
Adapter-Based Extension of Multi-Speaker Text-to-Speech Model for New Speakers
AdaSpeech: Adaptive Text to Speech for Custom Voice
Cross-Speaker Prosody Transfer on Any Text for Expressive Speech Synthesis
Speaker normalization (GRL) for self-supervised speech emotion recognition
Method of Preventing Timbre Leakage Based on Data Perturbation
https://github.com/auspicious3000/contentvec/blob/main/contentvec/data/audio/audio_utils_1.py
https://github.com/revsic/torch-nansy/blob/main/utils/augment/praat.py
https://github.com/revsic/torch-nansy/blob/main/utils/augment/peq.py
https://github.com/biggytruck/SpeechSplit2/blob/main/utils.py
https://github.com/OlaWod/FreeVC/blob/main/preprocess_sr.py
Contributors
Relevant Projects
- LoRA-SVC: decoder only svc
- Grad-SVC: diffusion based svc
- NSF-BigVGAN: vocoder for more work
- X-SING: more work