Spanish Language Models 💃🏻
A repository part of the MarIA project.
📃
Corpora Corpora | Number of documents | Number of tokens | Size (GB) |
---|---|---|---|
BNE | 201,080,084 | 135,733,450,668 | 570GB |
🤖
Models - RoBERTa-base BNE: https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne
- RoBERTa-large BNE: https://huggingface.co/PlanTL-GOB-ES/roberta-large-bne
- GPT2-base BNE: https://huggingface.co/PlanTL-GOB-ES/gpt2-base-bne
- GPT2-large BNE: https://huggingface.co/PlanTL-GOB-ES/gpt2-large-bne
- Other models: (WIP)
Fine-tunned models 🧗🏼♀️🏇🏼🤽🏼♀️🏌🏼♂️🏄🏼♀️
- RoBERTa-base-BNE for Capitel-POS: https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne-capitel-pos
- RoBERTa-large-BNE for Capitel-POS: https://huggingface.co/PlanTL-GOB-ES/roberta-large-bne-capitel-pos
- RoBERTa-base-BNE for Capitel-NER: https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne-capitel-ner
- RoBERTa-base-BNE for Capitel-NER: https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne-capitel-ner-plus (very robust)
- RoBERTa-large-BNE for Capitel-NER: https://huggingface.co/PlanTL-GOB-ES/roberta-large-bne-capitel-ner
- RoBERTa-base-BNE for SQAC: https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne-sqac
- RoBERTa-large-BNE for SQAC: https://huggingface.co/PlanTL-GOB-ES/roberta-large-bne-sqac
🔤
Word embeddings Word embeddings trained with FastText for 300d:
- CBOW Word embeddings: https://zenodo.org/record/5044988
- Skip-gram Word embeddings: https://zenodo.org/record/5046525
🗂️
Datasets - Spanish Question Answering Corpus (SQAC)
🦆 : https://huggingface.co/datasets/PlanTL-GOB-ES/SQAC
✅
Evaluation Dataset | Metric | RoBERTa-b | RoBERTa-l | BETO* | mBERT | BERTIN** | Electricidad*** |
---|---|---|---|---|---|---|---|
MLDoc | F1 | 0.9664 | 0.9702 | 0.9714 |
0.9617 | 0.9668 | 0.9565 |
CoNLL-NERC | F1 | 0.8851 |
0.8823 | 0.8759 | 0.8691 | 0.8835 | 0.7954 |
CAPITEL-NERC | F1 | 0.8960 | 0.9051 |
0.8772 | 0.8810 | 0.8856 | 0.8035 |
PAWS-X | F1 | 0.9020 | 0.9150 |
0.8930 | 0.9000 | 0.8965 | 0.9045 |
UD-POS | F1 | 0.9907 |
0.9904 | 0.9900 | 0.9886 | 0.9898 | 0.9818 |
CAPITEL-POS | F1 | 0.9846 | 0.9856 |
0.9836 | 0.9839 | 0.9847 | 0.9816 |
SQAC | F1 | 0.7923 | 0.8202 |
0.7923 | 0.7562 | 0.7678 | 0.7383 |
STS | Combined | 0.8533 |
0.8411 | 0.8159 | 0.8164 | 0.7945 | 0.8063 |
XNLI | Accuracy | 0.8016 | 0.8263 |
0.8130 | 0.7876 | 0.7890 | 0.7878 |
* A model based on BERT architecture.
** A model based on RoBERTa architecture.
*** A model based on Electra architecture.
⚗️
Usage example For the RoBERTa-base
from transformers import AutoModelForMaskedLM
from transformers import AutoTokenizer, FillMaskPipeline
from pprint import pprint
tokenizer_hf = AutoTokenizer.from_pretrained('PlanTL-GOB-ES/roberta-base-bne')
model = AutoModelForMaskedLM.from_pretrained('PlanTL-GOB-ES/roberta-base-bne')
model.eval()
pipeline = FillMaskPipeline(model, tokenizer_hf)
text = f"¡Hola <mask>!"
res_hf = pipeline(text)
pprint([r['token_str'] for r in res_hf])
For the RoBERTa-large
from transformers import AutoModelForMaskedLM
from transformers import AutoTokenizer, FillMaskPipeline
from pprint import pprint
tokenizer_hf = AutoTokenizer.from_pretrained('PlanTL-GOB-ES/roberta-large-bne')
model = AutoModelForMaskedLM.from_pretrained('PlanTL-GOB-ES/roberta-large-bne')
model.eval()
pipeline = FillMaskPipeline(model, tokenizer_hf)
text = f"¡Hola <mask>!"
res_hf = pipeline(text)
pprint([r['token_str'] for r in res_hf])
👩👧👦
Other Spanish Language Models We are developing domain-specific language models:
📣
Cite @article{gutierrezfandino2022,
author = {Asier Gutiérrez-Fandiño and Jordi Armengol-Estapé and Marc Pàmies and Joan Llop-Palao and Joaquin Silveira-Ocampo and Casimiro Pio Carrino and Carme Armentano-Oller and Carlos Rodriguez-Penagos and Aitor Gonzalez-Agirre and Marta Villegas},
title = {MarIA: Spanish Language Models},
journal = {Procesamiento del Lenguaje Natural},
volume = {68},
number = {0},
year = {2022},
issn = {1989-7553},
url = {http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6405},
pages = {39--60}
}
📧
Contact For questions regarding this work, contact [email protected]
Disclaimer
The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions.
When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of artificial intelligence.
In no event shall the owner of the models (SEDIA – State Secretariat for digitalization and artificial intelligence) nor the creator (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models.
Los modelos publicados en este repositorio tienen una finalidad generalista y están a disposición de terceros. Estos modelos pueden tener sesgos y/u otro tipo de distorsiones indeseables.
Cuando terceros desplieguen o proporcionen sistemas y/o servicios a otras partes usando alguno de estos modelos (o utilizando sistemas basados en estos modelos) o se conviertan en usuarios de los modelos, deben tener en cuenta que es su responsabilidad mitigar los riesgos derivados de su uso y, en todo caso, cumplir con la normativa aplicable, incluyendo la normativa en materia de uso de inteligencia artificial.
En ningún caso el propietario de los modelos (SEDIA – Secretaría de Estado de Digitalización e Inteligencia Artificial) ni el creador (BSC – Barcelona Supercomputing Center) serán responsables de los resultados derivados del uso que hagan terceros de estos modelos.