• Stars
    star
    902
  • Rank 50,637 (Top 1.0 %)
  • Language
    C++
  • License
    MIT License
  • Created over 5 years ago
  • Updated 9 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

SuMa++: Efficient LiDAR-based Semantic SLAM (Chen et al IROS 2019)

SuMa++: Efficient LiDAR-based Semantic SLAM

This repository contains the implementation of SuMa++, which generates semantic maps only using three-dimensional laser range scans.

Developed by Xieyuanli Chen and Jens Behley.

SuMa++ is built upon SuMa and RangeNet++. For more details, we refer to the original project websites SuMa and RangeNet++.

An example of using SuMa++: ptcl

Table of Contents

  1. Introduction
  2. Publication
  3. Dependencies
  4. Build
  5. How to run
  6. More Related Work
  7. Frequently Asked Questions
  8. License

Publication

If you use our implementation in your academic work, please cite the corresponding paper:

@inproceedings{chen2019iros, 
		author = {X. Chen and A. Milioto and E. Palazzolo and P. Giguรจre and J. Behley and C. Stachniss},
		title  = {{SuMa++: Efficient LiDAR-based Semantic SLAM}},
		booktitle = {Proceedings of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS)},
		pages = {4530--4537},
		year = {2019},
		url = {https://www.ipb.uni-bonn.de/wp-content/papercite-data/pdf/chen2019iros.pdf}
}

Dependencies

  • catkin
  • Qt5 >= 5.2.1
  • OpenGL >= 4.0
  • libEigen >= 3.2
  • gtsam >= 4.0 (tested with 4.0.0-alpha2)

In Ubuntu 16.04: Installing all dependencies should be accomplished by

sudo apt-get install build-essential cmake libgtest-dev libeigen3-dev libboost-all-dev qtbase5-dev libglew-dev libqt5libqgtk2 catkin

Additionally, make sure you have catkin-tools and the fetch verb installed:

sudo apt install python-pip
sudo pip install catkin_tools catkin_tools_fetch empy

Build

rangenet_lib

To use SuMa++, you need to first build the rangenet_lib with the TensorRT and C++ interface. For more details about building and using rangenet_lib you could find in rangenet_lib.

SuMa++

Clone the repository in the src directory of the same catkin workspace where you built the rangenet_lib:

git clone https://github.com/PRBonn/semantic_suma.git

Download the additional dependencies (or clone glow into your catkin workspace src yourself):

catkin deps fetch

For the first setup of your workspace containing this project, you need:

catkin build --save-config -i --cmake-args -DCMAKE_BUILD_TYPE=Release -DOPENGL_VERSION=430 -DENABLE_NVIDIA_EXT=YES

Where you have to set OPENGL_VERSION to the supported OpenGL core profile version of your system, which you can query as follows:

$ glxinfo | grep "version"
server glx version string: 1.4
client glx version string: 1.4
GLX version: 1.4
OpenGL core profile version string: 4.3.0 NVIDIA 367.44
OpenGL core profile shading language version string: 4.30 NVIDIA [...]
OpenGL version string: 4.5.0 NVIDIA 367.44
OpenGL shading language version string: 4.50 NVIDIA

Here the line OpenGL core profile version string: 4.3.0 NVIDIA 367.44 is important and therefore you should use -DOPENGL_VERSION = 430. If you are unsure you can also leave it on the default version 330, which should be supported by all OpenGL-capable devices.

If you have a NVIDIA device, like a Geforce or Quadro graphics card, you should also activate the NVIDIA extensions using -DENABLE_NVIDIA_EXT=YES for info about the current GPU memory usage of the program.

After this setup steps, you can build with catkin build, since the configuration has been saved to your current Catkin profile (therefore, --save-config was needed).

Now the project root directory (e.g. ~/catkin_ws/src/semantic_suma) should contain a bin directory containing the visualizer.

How to run

Important Notice

  • Before running SuMa++, you need to first build the rangenet_lib and download the pretrained model.
  • You need to specify the model path in the configuration file in the config/ folder.
  • For the first time using, rangenet_lib will take several minutes to build a .trt model for SuMa++.
  • SuMa++ now can only work with KITTI dataset, since the semantic segmentation may not generalize well in other environments.
  • To use SuMa++ with your own dataset, you may finetune or retrain the semantic segmentation network.

All binaries are copied to the bin directory of the source folder of the project. Thus,

  1. run visualizer in the bin directory by ./visualizer,
  2. open a Velodyne directory from the KITTI Visual Odometry Benchmark and select a ".bin" file,
  3. start the processing of the scans via the "play button" in the GUI.

More Related Work

OverlapNet - Loop Closing for 3D LiDAR-based SLAM

This repo contains the code for our RSS2020 paper: OverlapNet - Loop Closing for 3D LiDAR-based SLAM.

OverlapNet is a modified Siamese Network that predicts the overlap and relative yaw angle of a pair of range images generated by 3D LiDAR scans, which can be used for place recognition and loop closing.

Overlap-based LiDAR Global Localization

This repo contains the code for our IROS2020 paper: Learning an Overlap-based Observation Model for 3D LiDAR Localization.

It uses the OverlapNet to train an observation model for Monte Carlo Localization and achieves global localization with 3D LiDAR scans.

Frequently Asked Questions

License

Copyright 2019, Xieyuanli Chen, Jens Behley, Cyrill Stachniss, Photogrammetry and Robotics Lab, University of Bonn.

This project is free software made available under the MIT License. For details see the LICENSE file.

More Repositories

1

kiss-icp

A LiDAR odometry pipeline that just works
Python
1,479
star
2

depth_clustering

๐Ÿš• Fast and robust clustering of point clouds generated with a Velodyne sensor.
C++
1,105
star
3

lidar-bonnetal

Semantic and Instance Segmentation of LiDAR point clouds for autonomous driving
Python
912
star
4

semantic-kitti-api

SemanticKITTI API for visualizing dataset, processing data, and evaluating results.
Python
762
star
5

OverlapNet

OverlapNet - Loop Closing for 3D LiDAR-based SLAM (chen2020rss)
Python
649
star
6

LiDAR-MOS

(LMNet) Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data (RAL/IROS 2021)
Python
574
star
7

vdbfusion

C++/Python Sparse Volumetric TSDF Fusion
C++
456
star
8

SHINE_mapping

๐ŸŒŸ SHINE-Mapping: Large-Scale 3D Mapping Using Sparse Hierarchical Implicit Neural Representations (ICRA 2023)
Python
443
star
9

puma

Poisson Surface Reconstruction for LiDAR Odometry and Mapping
Python
400
star
10

PIN_SLAM

๐Ÿ“PIN-SLAM: LiDAR SLAM Using a Point-Based Implicit Neural Representation for Achieving Global Map Consistency [TRO' 24]
Python
341
star
11

bonnet

Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics.
Python
323
star
12

range-mcl

Range Image-based LiDAR Localization for Autonomous Vehicles Using Mesh Maps (chen2021icra)
Python
278
star
13

overlap_localization

chen2020iros: Learning an Overlap-based Observation Model for 3D LiDAR Localization.
Python
270
star
14

rangenet_lib

Inference module for RangeNet++ (milioto2019iros, chen2019iros)
C++
238
star
15

refusion

ReFusion: 3D Reconstruction in Dynamic Environments for RGB-D Cameras Exploiting Residuals
C++
235
star
16

bonnetal

Bonnet and then some! Deep Learning Framework for various Image Recognition Tasks. Photogrammetry and Robotics Lab, University of Bonn
Python
226
star
17

4DMOS

Receding Moving Object Segmentation in 3D LiDAR Data Using Sparse 4D Convolutions (RAL 2022)
Python
201
star
18

MapClosures

Effectively Detecting Loop Closures using Point Cloud Density Maps
Python
196
star
19

LiDiff

[CVPR'24] Scaling Diffusion Models to Real-World 3D LiDAR Scene Completion
Python
194
star
20

visual-crop-row-navigation

This is a visual-servoing based robot navigation framework tailored for navigating in row-crop fields. It uses the images from two on-board cameras and exploits the regular crop-row structure present in the fields for navigation, without performing explicit localization or mapping. It allows the robot to follow the crop-rows accurately and handles the switch to the next row seamlessly within the same framework.
C++
178
star
21

pole-localization

Online Range Image-based Pole Extractor for Long-term LiDAR Localization in Urban Environments
Python
167
star
22

online_place_recognition

Graph-based image sequences matching for the visual place recognition in changing environments.
C++
150
star
23

agribot

The mission of the project is to build an agricultural robot (AgriBot) from scratch with the aim of serving as a data-recording platform in fields. For further information about the design and purpose of the robot, please follow the About the AgriBot Project page
C++
143
star
24

LocNDF

LocNDF: Neural Distance Field Mapping for Robot Localization
Python
136
star
25

4dNDF

3D LiDAR Mapping in Dynamic Environments using a 4D Implicit Neural Representation (CVPR 2024)
Python
131
star
26

make_it_dense

Make it Dense: Self-Supervised Geometric Scan Completion of Sparse 3D LiDAR Scans in Large Outdoor Environments
Python
127
star
27

point-cloud-prediction

Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks
Python
125
star
28

ir-mcl

IR-MCL: Implicit Representation-Based Online Global Localization https://arxiv.org/abs/2210.03113
Python
120
star
29

MutiverseOdometry

Code for Simple But Effective Redundant Odometry for Autonomous Vehicles
C++
111
star
30

vpr_relocalization

The framework for visual place recognition in changing enviroments. Matches two sequence of images of arbitrary trajectory overlap.
C++
107
star
31

TARL

[CVPR'23] TARL: Temporal Consistent 3D LiDAR Representation Learning for Semantic Perception in Autonomous Driving
Python
99
star
32

lidar-visualizer

A LiDAR visualization tool for all your datasets
Python
96
star
33

deep-point-map-compression

Python
95
star
34

segcontrast

Python
92
star
35

auto-mos

Automatic Labeling to Generate Training Data for Online LiDAR-based Moving Object Segmentation
Python
91
star
36

3DUIS

Python
80
star
37

lidar_transfer

Code for Langer et al. "Domain Transfer for Semantic Segmentation of LiDAR Data using Deep Neural Networks", IROS, 2020.
Python
70
star
38

descriptor-dr

[ICRA 2023] Learning-Based Dimensionality Reduction for Computing Compact and Effective Local Feature Descriptors
Python
61
star
39

hsmcl

C++
60
star
40

SIMP

Python
59
star
41

ContMAV

[CVPR2024] Open-world Semantic Segmentation Including Class Similarity
Python
59
star
42

extrinsic_calibration

Motion Based Multi-Sensor Extrinsic Calibration
Python
57
star
43

vdbfusion_ros

ROS1 Wrapper for VDBFusion https://github.com/PRBonn/vdbfusion
C++
57
star
44

DCPCR

DCPCR: Deep Compressed Point Cloud Registration in Large-Scale Outdoor Environments
Python
55
star
45

HortiMapping

๐Ÿซ‘ Panoptic Mapping with Fruit Completion and Pose Estimation for Horticultural Robots (IROS' 23)
Python
53
star
46

fast_change_detection

Fast Image-Based Geometric Change Detection Given a 3D Model
C++
44
star
47

contrastive_association

Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans
Python
43
star
48

retriever

Point Cloud-based Place Recognition in Compressed Map
Python
40
star
49

4d_plant_registration

Python
38
star
50

tmcl

Text Guided MCL
C++
34
star
51

dynamic-point-removal

Static Map Generation from 3D LiDAR Point Clouds Exploiting Ground Segmentation
Python
34
star
52

MaskPLS

Mask-Based Panoptic LiDAR Segmentation for Autonomous Driving, RA-L, 2023
Python
32
star
53

manifold_python

Python bindings for https://github.com/hjwdzh/Manifold
C++
30
star
54

PS-res-excite

Python
26
star
55

kppr

KPPR: Exploiting Momentum Contrast for Point Cloud-Based Place Recognition
Python
26
star
56

goPro-meta

App to sample images from goPro Hero 5 video and syncronize sensor frames to them. Output is yaml file and extracted images.
C++
25
star
57

geometrical_stem_detection

Code for fast and accurate geometrical plant stem detection
C++
24
star
58

PartiallyObservedInverseGames.jl

An inverse game solver for inferring objectives from noise-corrupted partial state observations of non-cooperative multi-agent interactions.
Julia
23
star
59

pybonirob

Set of tools to access bonirob datasets in Python
Python
23
star
60

phenobench-baselines

Baselines of the PhenoBench Dataset
Python
20
star
61

voxblox_pybind

Python bindings for the Voxblox library
C++
20
star
62

catkin_tools_fetch

๐Ÿ• "fetch" and "update" dependencies of projects in your catkin workspace with a new verb "dependencies" for catkin_tools
Python
16
star
63

nuscenes2kitti

Python
16
star
64

StyleGenForLabels

StyleGAN-based generation of labels for crop-weed segmentation
Python
12
star
65

plants_temporal_matcher

This system can perform 3D point-to-point associations between plants' point clouds acquired in different session even in presence of highly repetitive structures and drastic changes.
Python
12
star
66

ipb_homework_checker

โœ”๏ธ A generic homework checker that we use to automatically check students homework
Python
11
star
67

leaf_mesher

Precise 3D Reconstruction of Plants from UAV Imagery Combining Bundle Adjustment and Template Matching
9
star
68

HAPT

Python
9
star
69

sigf

Image Matching for Crop Fields Using Similarity Invariant Geometric Feature
MATLAB
8
star
70

DG-CWS

Towards Domain Generalization in Crop and Weed Segmentation for Precision Farming Robots
Python
7
star
71

agri-pretraining

Python
7
star
72

leaf-plant-instance-segmentation

In-Field Phenotyping Based on Crop Leaf and Plant Instance Segmentation
Python
5
star
73

MinkowskiPanoptic

Panoptic segmentation baseline implemented based on the MinkowskiEngine library
Python
5
star
74

Unsupervised-Pre-Training-for-3D-Leaf-Instance-Segmentation

Official repository of Unsupervised Pre-Training for 3D Leaf Instance Segmentation by Roggiolani et al.
Python
5
star
75

vdb_to_numpy

Tool to convert VDB grids to numpy arrays.
Jupyter Notebook
4
star
76

g2o_catkin

:octocat: G2O meets catkin
CMake
3
star
77

ipb_workspace

An empty default workspace for development inside IPB lab
3
star
78

plant_pcd_segmenter

High Precision Leaf Instance Segmentation for Phenotyping in Point Clouds Obtained Under Real Field Conditions
2
star
79

cinderella-geometric-animations

Animations of geometric properties relevant to Photogrammetry, Computer Vision and Robotics created with Cinderella
HTML
1
star