• Stars
    star
    574
  • Rank 77,739 (Top 2 %)
  • Language
    Python
  • License
    MIT License
  • Created over 3 years ago
  • Updated about 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

(LMNet) Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data (RAL/IROS 2021)

LMNet: Moving Object Segmentation in 3D LiDAR Data

This repo contains the code for our paper: Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data PDF.

Our approach accurately segments the scene into moving and static objects, i.e., distinguishing between moving cars vs. parked cars. This task is also called 3D motion detection or segmentation. Our method runs faster than the frame rate of the sensor and can be used to improve 3D LiDAR-based odometry/SLAM and mapping results as shown below.

Additionally, we created a new benchmark for LiDAR-based moving object segmentation based on SemanticKITTI here.

Complete demo video can be found in YouTube here. LiDAR-MOS in action:

Table of Contents

  1. Introduction of the repo and benchmark
  2. Publication
  3. Log
  4. Dependencies
  5. How to use
  6. Applications
  7. Collection of downloads
  8. License

Publication

If you use our code and benchmark in your academic work, please cite the corresponding paper:

@article{chen2021ral,
	title={{Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data}},
	author={X. Chen and S. Li and B. Mersch and L. Wiesmann and J. Gall and J. Behley and C. Stachniss},
	year={2021},
	volume=6,
	issue=4,
	pages={6529-6536},
	journal={IEEE Robotics and Automation Letters (RA-L)},
	url = {http://www.ipb.uni-bonn.de/pdfs/chen2021ral-iros.pdf},
	doi = {10.1109/LRA.2021.3093567},
	issn = {2377-3766},
}

Log

News 20220907

The old codalab server stopped the service.

Please use the new link here to submit your results to the benchmark. You could still find the old results here.

News 20220706

Our MotionSeg3D is open-source here.

It uses a dual-branch and dual-head structure to fuse Spatial-Temporal information for LiDAR moving object segmentation.

News 20220615

Our 4DMOS is open-source here.

It uses sparse CNN on 4D point clouds for LiDAR moving object segmentation.

v1.1

Thanks Jiadai Sun for testing and correcting some bugs of SalsaNext-MOS.

More setups can also be found here: #47

v1.0

Open-source version

Dependencies

We built and tested our work based on SalsaNext, RangeNet++ and MINet. We thank the original authors for their nice work and implementation. If you are interested in fast LiDAR-based semantic segmentation, we strongly recommend having a look at the original repositories.

Note that, in this repo, we show that how easily we could achieve LiDAR-based moving object segmentation exploiting sequential information with existing segmentation networks. We didn't change the original pipeline of the segmentation networks, but only changed the data loader and input of the network as shown in the figure below. Therefore, our method can be used with any range-image-based LiDAR segmentation networks.

Our method is based on range images. To use range projection with fast c++ library, please find the usage doc here.

How to use

For a quick test of all the steps below, one could download a toy dataset here and decompress it in the data\ folder following the data structure data/README.md.

Prepare training data

To use our method, one needs to generate the residual images. Here is a quick demo:

  $ python3 utils/gen_residual_images.py

More setup about the data preparation can be found in the yaml file config/data_preparing.yaml. To prepare the training data for the whole KITTI-Odometry dataset, please download the original website.

Using SalsaNext as the baseline

To use SalsaNext as the baseline segmentation network for LiDAR-MOS, one should follow the mos_SalsaNext/README.md to set it up.

Note that, we use pytorch v1.5.1+cu101 which is different from the original one. More information about the related issue is here.

Inferring

To generate the LiDAR-MOS predictions with pretrained model with one residual image (download, please unzip before using). Quick test on toy dataset, directly run

  $ cd mos_SalsaNext/train/tasks/semantic
  $ python3 infer.py -d ../../../../data -m ../../../../data/model_salsanext_residual_1 -l ../../../../data/predictions_salsanext_residual_1_new -s valid

Inferring the whole dataset, please download the KITTI-Odometry dataset from the original website, and change the corresponding paths.

  $ cd mos_SalsaNext/train/tasks/semantic
  $ python3 infer.py -d path/to/kitti/dataset -m path/to/pretrained_model -l path/to/log -s train/valid/test # depending of desired split to evaluate

Training

To train a LiDAR-MOS network with SalsaNext from scratch, one has to download the KITTI-Odometry dataset and Semantic-Kitti dataset: Change the corresponding paths and run:

  $ cd mos_SalsaNext/train/tasks/semantic
  $ ./train.sh -d path/to/kitti/dataset -a salsanext_mos.yml -l path/to/log -c 0  # the number of used gpu cores

Using RangeNet++ as the baseline

To use RangeNet++ as the baseline segmentation network for LiDAR-MOS, one should follow the mos_RangeNet/README.md to set it up.

Inferring

Inferring the whole dataset, please download the KITTI-Odometry dataset from the original website, the pretrained model and change the corresponding paths.

  $ cd mos_RangeNet/tasks/semantic
  $ python3 infer.py -d path/to/kitti/dataset -m path/to/pretrained_model -l path/to/log -s train/valid/test # depending of desired split to evaluate

Training

To train a LiDAR-MOS network with RangeNet++ from scratch, one has to download the KITTI-Odometry dataset and Semantic-Kitti dataset and change the corresponding paths and run:

  $ cd mos_RangeNet/tasks/semantic
  $ python3 train.py -d path/to/kitti/dataset -ac rangenet_mos.yaml -l path/to/log

More pretrained model and LiDAR-MOS predictions can be found in collection of downloads.

Evaluation and visualization

How to evaluate

Evaluation metrics. Let's call the moving (dynamic) status as D and the static status as S.

Since we ignore the unlabelled and invalid status, therefore in MOD there are only two classes.

GT\Prediction dynamic static
dynamic TD FS
static FD TS
  • $$ IoU_{MOS} = \frac{TD}{TD+FD+FS} $$

To evaluate the MOS results on the toy dataset just run:

  $ python3 utils/evaluate_mos.py -d data -p data/predictions_salsanext_residual_1_valid -s valid

To evaluate the MOS results on our LiDAR-MOS benchmark please have a look at our semantic-kitti-api and benchmark website.

How to visualize the predictions

To visualize the MOS results on the toy dataset just run:

  $ python3 utils/visualize_mos.py -d data -p data/predictions_salsanext_residual_1_valid -s 8  # here we use a specific sequence number

where:

  • sequence is the sequence to be accessed.
  • dataset is the path to the kitti dataset where the sequences directory is.

Navigation:

  • n is next scan,
  • b is previous scan,
  • esc or q exits.

Applications

LiDAR-MOS is very important for building consistent maps, making future state predictions, avoiding collisions, and planning. It can also improve and robustify pose estimation, sensor data registration, and SLAM. Here we show two obvious applications of our LiDAR-MOS which are LiDAR-based odometry/SLAM as well as 3D mapping. Before that, we show two simple examples of how to combine our method with semantics and clean the scans. After cleaning scans we can get better odometry/SLAM and 3D mapping results.

Note that, here we show two direct use cases of our MOS approach without any further optimizations employed.

Enhanced with semantics

To show a simple way of combining our LiDAR-MOS with semantics, we provide a quick demo with the toy dataset:

  $ python3 utils/combine_semantics.py

It just simply checks whether the moving objects are movable classes or not. If not, re-assigned as static.

Clean the scans

To clean the LiDAR scans with our LiDAR-MOS as masks, we also provide a quick demo on the toy dataset:

  $ python3 utils/scan_cleaner.py

Odometry/SLAM

Using the cleaned LiDAR scans, we see that by simply applying our MOS predictions as a preprocessing mask, the odometry results are improved in both the KITTI training and test data and even slightly better than the carefully-designed full classes semantic-enhanced SuMa++.

The testing results of our methods can also be found in KITTI-Odometry benchmark.

Mapping

we compare the aggregated point cloud maps (left) directly with the raw LiDAR scans, (right) with the cleaned LiDAR scans by applying our MOS predictions as masks. As can be seen, there are moving objects present that pollute the map, which might have adversarial effects, when used for localization or path planning. By using our MOS predictions as masks, we can effectively remove these artifacts and get a clean map.

Map cleaning

For offline map cleaning, Giseop Kim combined his Removert and LiDAR-MOS, and got very good results. More information can be found in #28.

Collection of downloads

License

This project is free software made available under the MIT License. For details see the LICENSE file.

More Repositories

1

kiss-icp

A LiDAR odometry pipeline that just works
Python
1,479
star
2

depth_clustering

🚕 Fast and robust clustering of point clouds generated with a Velodyne sensor.
C++
1,105
star
3

lidar-bonnetal

Semantic and Instance Segmentation of LiDAR point clouds for autonomous driving
Python
912
star
4

semantic_suma

SuMa++: Efficient LiDAR-based Semantic SLAM (Chen et al IROS 2019)
C++
902
star
5

semantic-kitti-api

SemanticKITTI API for visualizing dataset, processing data, and evaluating results.
Python
762
star
6

OverlapNet

OverlapNet - Loop Closing for 3D LiDAR-based SLAM (chen2020rss)
Python
649
star
7

vdbfusion

C++/Python Sparse Volumetric TSDF Fusion
C++
456
star
8

SHINE_mapping

🌟 SHINE-Mapping: Large-Scale 3D Mapping Using Sparse Hierarchical Implicit Neural Representations (ICRA 2023)
Python
443
star
9

puma

Poisson Surface Reconstruction for LiDAR Odometry and Mapping
Python
400
star
10

PIN_SLAM

📍PIN-SLAM: LiDAR SLAM Using a Point-Based Implicit Neural Representation for Achieving Global Map Consistency [TRO' 24]
Python
341
star
11

bonnet

Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics.
Python
323
star
12

range-mcl

Range Image-based LiDAR Localization for Autonomous Vehicles Using Mesh Maps (chen2021icra)
Python
278
star
13

overlap_localization

chen2020iros: Learning an Overlap-based Observation Model for 3D LiDAR Localization.
Python
270
star
14

rangenet_lib

Inference module for RangeNet++ (milioto2019iros, chen2019iros)
C++
238
star
15

refusion

ReFusion: 3D Reconstruction in Dynamic Environments for RGB-D Cameras Exploiting Residuals
C++
235
star
16

bonnetal

Bonnet and then some! Deep Learning Framework for various Image Recognition Tasks. Photogrammetry and Robotics Lab, University of Bonn
Python
226
star
17

4DMOS

Receding Moving Object Segmentation in 3D LiDAR Data Using Sparse 4D Convolutions (RAL 2022)
Python
201
star
18

MapClosures

Effectively Detecting Loop Closures using Point Cloud Density Maps
Python
196
star
19

LiDiff

[CVPR'24] Scaling Diffusion Models to Real-World 3D LiDAR Scene Completion
Python
194
star
20

visual-crop-row-navigation

This is a visual-servoing based robot navigation framework tailored for navigating in row-crop fields. It uses the images from two on-board cameras and exploits the regular crop-row structure present in the fields for navigation, without performing explicit localization or mapping. It allows the robot to follow the crop-rows accurately and handles the switch to the next row seamlessly within the same framework.
C++
178
star
21

pole-localization

Online Range Image-based Pole Extractor for Long-term LiDAR Localization in Urban Environments
Python
167
star
22

online_place_recognition

Graph-based image sequences matching for the visual place recognition in changing environments.
C++
150
star
23

agribot

The mission of the project is to build an agricultural robot (AgriBot) from scratch with the aim of serving as a data-recording platform in fields. For further information about the design and purpose of the robot, please follow the About the AgriBot Project page
C++
143
star
24

LocNDF

LocNDF: Neural Distance Field Mapping for Robot Localization
Python
136
star
25

4dNDF

3D LiDAR Mapping in Dynamic Environments using a 4D Implicit Neural Representation (CVPR 2024)
Python
131
star
26

make_it_dense

Make it Dense: Self-Supervised Geometric Scan Completion of Sparse 3D LiDAR Scans in Large Outdoor Environments
Python
127
star
27

point-cloud-prediction

Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks
Python
125
star
28

ir-mcl

IR-MCL: Implicit Representation-Based Online Global Localization https://arxiv.org/abs/2210.03113
Python
120
star
29

MutiverseOdometry

Code for Simple But Effective Redundant Odometry for Autonomous Vehicles
C++
111
star
30

vpr_relocalization

The framework for visual place recognition in changing enviroments. Matches two sequence of images of arbitrary trajectory overlap.
C++
107
star
31

TARL

[CVPR'23] TARL: Temporal Consistent 3D LiDAR Representation Learning for Semantic Perception in Autonomous Driving
Python
99
star
32

lidar-visualizer

A LiDAR visualization tool for all your datasets
Python
96
star
33

deep-point-map-compression

Python
95
star
34

segcontrast

Python
92
star
35

auto-mos

Automatic Labeling to Generate Training Data for Online LiDAR-based Moving Object Segmentation
Python
91
star
36

3DUIS

Python
80
star
37

lidar_transfer

Code for Langer et al. "Domain Transfer for Semantic Segmentation of LiDAR Data using Deep Neural Networks", IROS, 2020.
Python
70
star
38

descriptor-dr

[ICRA 2023] Learning-Based Dimensionality Reduction for Computing Compact and Effective Local Feature Descriptors
Python
61
star
39

hsmcl

C++
60
star
40

SIMP

Python
59
star
41

ContMAV

[CVPR2024] Open-world Semantic Segmentation Including Class Similarity
Python
59
star
42

extrinsic_calibration

Motion Based Multi-Sensor Extrinsic Calibration
Python
57
star
43

vdbfusion_ros

ROS1 Wrapper for VDBFusion https://github.com/PRBonn/vdbfusion
C++
57
star
44

DCPCR

DCPCR: Deep Compressed Point Cloud Registration in Large-Scale Outdoor Environments
Python
55
star
45

HortiMapping

🫑 Panoptic Mapping with Fruit Completion and Pose Estimation for Horticultural Robots (IROS' 23)
Python
53
star
46

fast_change_detection

Fast Image-Based Geometric Change Detection Given a 3D Model
C++
44
star
47

contrastive_association

Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans
Python
43
star
48

retriever

Point Cloud-based Place Recognition in Compressed Map
Python
40
star
49

4d_plant_registration

Python
38
star
50

tmcl

Text Guided MCL
C++
34
star
51

dynamic-point-removal

Static Map Generation from 3D LiDAR Point Clouds Exploiting Ground Segmentation
Python
34
star
52

MaskPLS

Mask-Based Panoptic LiDAR Segmentation for Autonomous Driving, RA-L, 2023
Python
32
star
53

manifold_python

Python bindings for https://github.com/hjwdzh/Manifold
C++
30
star
54

PS-res-excite

Python
26
star
55

kppr

KPPR: Exploiting Momentum Contrast for Point Cloud-Based Place Recognition
Python
26
star
56

goPro-meta

App to sample images from goPro Hero 5 video and syncronize sensor frames to them. Output is yaml file and extracted images.
C++
25
star
57

geometrical_stem_detection

Code for fast and accurate geometrical plant stem detection
C++
24
star
58

PartiallyObservedInverseGames.jl

An inverse game solver for inferring objectives from noise-corrupted partial state observations of non-cooperative multi-agent interactions.
Julia
23
star
59

pybonirob

Set of tools to access bonirob datasets in Python
Python
23
star
60

phenobench-baselines

Baselines of the PhenoBench Dataset
Python
20
star
61

voxblox_pybind

Python bindings for the Voxblox library
C++
20
star
62

catkin_tools_fetch

🐕 "fetch" and "update" dependencies of projects in your catkin workspace with a new verb "dependencies" for catkin_tools
Python
16
star
63

nuscenes2kitti

Python
16
star
64

StyleGenForLabels

StyleGAN-based generation of labels for crop-weed segmentation
Python
12
star
65

plants_temporal_matcher

This system can perform 3D point-to-point associations between plants' point clouds acquired in different session even in presence of highly repetitive structures and drastic changes.
Python
12
star
66

ipb_homework_checker

✔️ A generic homework checker that we use to automatically check students homework
Python
11
star
67

leaf_mesher

Precise 3D Reconstruction of Plants from UAV Imagery Combining Bundle Adjustment and Template Matching
9
star
68

HAPT

Python
9
star
69

sigf

Image Matching for Crop Fields Using Similarity Invariant Geometric Feature
MATLAB
8
star
70

DG-CWS

Towards Domain Generalization in Crop and Weed Segmentation for Precision Farming Robots
Python
7
star
71

agri-pretraining

Python
7
star
72

leaf-plant-instance-segmentation

In-Field Phenotyping Based on Crop Leaf and Plant Instance Segmentation
Python
5
star
73

MinkowskiPanoptic

Panoptic segmentation baseline implemented based on the MinkowskiEngine library
Python
5
star
74

Unsupervised-Pre-Training-for-3D-Leaf-Instance-Segmentation

Official repository of Unsupervised Pre-Training for 3D Leaf Instance Segmentation by Roggiolani et al.
Python
5
star
75

vdb_to_numpy

Tool to convert VDB grids to numpy arrays.
Jupyter Notebook
4
star
76

g2o_catkin

:octocat: G2O meets catkin
CMake
3
star
77

ipb_workspace

An empty default workspace for development inside IPB lab
3
star
78

plant_pcd_segmenter

High Precision Leaf Instance Segmentation for Phenotyping in Point Clouds Obtained Under Real Field Conditions
2
star
79

cinderella-geometric-animations

Animations of geometric properties relevant to Photogrammetry, Computer Vision and Robotics created with Cinderella
HTML
1
star