Poverty-Level-Prediction-Project-with-Random-Forest-and-Decision-Trees
本项目旨在通过先进的数据分析和机器学习技术,对哥斯达黎加的家庭信息数据进行深度分析,以科学、精准地预测家庭的贫困程度。项目的核心目标是识别出最脆弱的家庭,以便政府和社会组织能更有针对性地提供援助,从而有效改善这些家庭的生活状况,并优化社会援助资源的分配。 通过随机森林和决策树等机器学习模型的应用,本项目开发了一个贫困预测系统。系统首先对原始数据集进行了详细的预处理和特征工程,包括缺失值处理、统计汇总与可视化以及新特征的创建和选择。然后,利用交叉验证和模型评估策略,精选出影响贫困程度的关键特征,并通过准确率等指标评估了模型的性能。最终,决策树模型以其高准确率被选为最优模型,用于实际的贫困预测任务。