• Stars
    star
    112
  • Rank 312,240 (Top 7 %)
  • Language
    Python
  • License
    MIT License
  • Created over 3 years ago
  • Updated over 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A DeepStack custom model for detecting common objects in dark/night images and videos.

DeepStack_ExDark

This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API for detecting 12 common objects (including people) in the dark/night images and videos. The Model was trained on the ExDark dataset dataset.

  • Create API and Detect Objects
  • Discover more Custom Models
  • Train your own Model

Create API and Detect Objects

The Trained Model can detect the following objects in dark/night images and videos.

  • Bicycle
  • Boat
  • Bottle
  • Bus
  • Chair
  • Car
  • Cat
  • Cup
  • Dog
  • Motorbike
  • People
  • Table

To start detecting, follow the steps below

  • Install DeepStack: Install DeepStack AI Server with instructions on DeepStack's documentation via https://docs.deepstack.cc

  • Download Custom Model: Download the trained custom model dark.pt for ExDark from this GitHub release. Create a folder on your machine and move the downloaded model to this folder.

    E.g A path on Windows Machine C\Users\MyUser\Documents\DeepStack-Models, which will make your model file path C\Users\MyUser\Documents\DeepStack-Models\dark.pt

  • Run DeepStack: To run DeepStack AI Server with the custom ExDark model, run the command that applies to your machine as detailed on DeepStack's documentation linked here.

    E.g

    For a Windows version, you run the command below

    deepstack --MODELSTORE-DETECTION "C\Users\MyUser\Documents\DeepStack-Models" --PORT 80

    For a Linux machine

    sudo docker run -v /home/MyUser/Documents/DeepStack-Models:/modelstore/detection -p 80:5000 deepquestai/deepstack

    Once DeepStack runs, you will see a log like the one below in your Terminal/Console

    That means DeepStack is running your custom dark.pt model and now ready to start detecting objects in night/dark images via the API endpoint http://localhost:80/v1/vision/custom/dark or http://your_machine_ip:80/v1/vision/custom/dark

  • Detect Objects in night image: You can detect objects in an image by sending a POST request to the url mentioned above with the paramater image set to an image using any proggramming language or with a tool like POSTMAN. For the purpose of this repository, we have provided a sample Python code below.

    • A sample image can be found in images/image.jpg of this repository

    • Install Python and install the DeepStack Python SDK via the command below

      pip install deepstack_sdk
    • Run the Python file detect.py in this repository.

      python detect.py
    • After the code runs, you will find a new image in images/image_detected.jpg with the detection visualized, with the following results printed in the Terminal/Console.

      Name: People
      Confidence: 0.74210495
      x_min: 616
      x_max: 672
      y_min: 224
      y_max: 323
      -----------------------
      Name: Dog
      Confidence: 0.82523036
      x_min: 250
      x_max: 327
      y_min: 288
      y_max: 349
      -----------------------
      Name: Dog
      Confidence: 0.86660975
      x_min: 403
      x_max: 485
      y_min: 283
      y_max: 341
      -----------------------
      Name: Dog
      Confidence: 0.87793124
      x_min: 508
      x_max: 609
      y_min: 309
      y_max: 370
      -----------------------
      Name: Dog
      Confidence: 0.89132285
      x_min: 286
      x_max: 372
      y_min: 316
      y_max: 393
      -----------------------
      

    • You can try running detection for other night/dark images.

Discover more Custom Models

For more custom DeepStack models that has been trained and ready to use, visit the Custom Models sample page on DeepStack's documentation https://docs.deepstack.cc/custom-models-samples/ .

Train your own Model

If you will like to train a custom model yourself, follow the instructions below.

  • Prepare and Annotate: Collect images on and annotate object(s) you plan to detect as detailed here
  • Train your Model: Train the model as detailed here

More Repositories

1

ImageAI

A python library built to empower developers to build applications and systems with self-contained Computer Vision capabilities
Python
8,403
star
2

FireNET

A deep learning model for detecting fire in video and camera streams
Python
262
star
3

IdenProf

IdenProf dataset is a collection of images of identifiable professionals. It is been collected to enable the development of AI systems that can serve by identifying people and the nature of their job by simply looking at an image, just like humans can do.
Python
183
star
4

Traffic-Net

A dataset of traffic, fire and accident images for training deep learning models.
Python
145
star
5

Action-Net

A dataset of images for artificial intelligence models to recognize human actions.
Python
51
star
6

ImageAIDocumentation

Official English Documentation of ImageAI
Python
22
star
7

IntelliP

IntelliP (Intelligent Photos) is a Windows photo gallery that intelligently organizes the pictures in your computer into 12 unique and related categories.
Python
21
star
8

DeepStack_OpenLogo

A DeepStack custom model for detecting 352 common logos
Python
20
star
9

DeepStack_ActionNET

A custom DeepStack model for detecting 16 human actions.
Python
19
star
10

Model-Playgrounds

A project developed and maintained as part of the aim at bringing current capabilities in machine learning and artificial intelligence into practical use for non-programmers and average computer users.
Python
14
star
11

CNNArchitectures

Code implementation of major Convolutional Neural Networks
Python
3
star
12

heartbeat-android

A collection of experiences utilizing machine learning models with Fritz
Java
3
star
13

AppleDetection

A dataset for detecting healthy and damaged apples
2
star
14

GoOne

Golang Practice
Go
2
star
15

DreamEngine

2
star
16

ImageAIDocumentation-French

Python
2
star
17

SampleRepo

1
star
18

imageai-fr

Python
1
star
19

prep

1
star
20

TheiaEngine

1
star