Image processing for Processing
This library collects various image processing algorithms and provides simple access to them. All algorithms are implemented in Java and runs without any other dependencies. Some algorithms are pretty standard and others maybe do you know from Photoshop. It starts with less basic features and grow over the last years. If you need high power performance better use opencv for processing.
If you like this project and you want to keep me awake
Installation
If you want to use this library in your processing sketch you can download it via the integrated Contribution Manager
.
Examples
Overview
The following algorithms are supported in this library. Click on the link to see an example image and a code snippet.
Original image
Photo taken by me more here
Basics
Grayscale image
PImage processedImage = Grayscale.apply(image);
Flip image
PImage processedImage = Flip.apply(image, horizontal, vertical); // horizontal and vertical are boolean
Invert colors
// invertRed, invertGreen and invertBlue are boolean
PImage processedImage = InvertColors.apply(image, invertRed, invertGreen, invertBlue);
Threshold image
PImage processedImage = Threshold.apply(image); // Auto threshold
PImage processedImage = Threshold.apply(image, value); // Threshold value between 0 and 255
Dilation image
PImage processedImage = Dilation.apply(image, radius); // radius is a positive number
Erosion image
PImage processedImage = Erosion.apply(image, radius); // radius is a positive number
Vignette image
// intensity and vignetteWidth are floats between 0.0 and 1.0
PImage processedImage = Vignette.apply(image, intensity, vignetteWidth);
Quantization
PImage processedImage = Quantization.apply(image, shades); // shades is a positive number between 1 and 255
PaletteMapping
PImage processedImage = PaletteMapping.apply(image, color1, color2, color3); // Add any number of colors from dark to light
Difference
// difference is a float between 0.0 and 1.0 from less to very different
float difference = Comparison.howDifferent(image1, image2);
// differenceImage is the difference between the pixel values (black is no difference, white is high difference)
PImage differenceImage = Comparison.calculateDifferenceImage(image1, image2);
Blur
Gaussian blur image
PImage processedImage = Gaussian.apply(image, 7, 0.84089642); // kernel size and sigma
Pixelize image
// pixelsize is a positive number
PImage processedImage = Pixelation.apply(image, pixelsize);
// Pixelize a sub area of the input image
PImage processedImage = Pixelation.apply(image, pixelsize, subX, subY, subWidth, subHeight);
Tilt-Shift-Effect
PImage processedImage = TiltShift.apply(image, blurIntensity, horizontal, position, sharpWideness);
Edge detection
Canny's algorithm
PImage processedImage = CannyEdgeDetector.apply(image);
Sobels algorithm
PImage processedImage = SobelEdgeDetector.apply(image);
// for colored sobel (for each color channel)
PImage processedImage = SobelEdgeDetector.apply(image, false);
Optimisation
Brightness
PImage processedImage = Brightness.apply(image, value);
// value isa positive number for brighting up or a negative for darken down
Contrast
// intensity is between -1.0 and 1.0
PImage processedImage = Contrast.apply(image, intensity);
Saturation
// intensity is between 0.0 and 10.0
// 0.0 to 1.0 decreases and all above increases the saturation
PImage processedImage = Saturation.apply(image, intensity);
Changing highlights
// intensity between -1.0 and 1.0
PImage processedImage = Lights.apply(image, intensity);
Changing shadows
// intensity between -1.0 and 1.0
PImage processedImage = Shadows.apply(image, intensity);
AutoBalance image
PImage processedImage = AutoBalance.apply(image);
Bloom image
PImage processedImage = Bloom.apply(image, intensity); // intensity between 0 and 255
Sharpen image
PImage processedImage = Sharpen.apply(image, sharpIntensity); // sharpIntensity between 0.0 and 10.0
Color shift image
// hue is a value between 0 and 360
// offset is the color range which is accepted (in hue range)
// shift is the number of the subtracted or added hue value
PImage processedImage = ColorShift.applyHue(image, hue, offset, shift); // or short: ColorShift.apply(image, hue, offset, shift)
PImage processedImage = ColorShift.applySaturation(image, hue, offset, shift);
PImage processedImage = ColorShift.applyBrightness(image, hue, offset, shift);
Looks
Lookup table image
LUT style = LUT.loadLut(LUT.STYLE.CONTRAST);
PImage processedImage = LUT.apply(image, style);
RetroConsole effect (Gameboy)
PImage processedImage = RetroConsole.applyGameboy(image, pixelSize);
Glitch image
PImage processedImage = Glitch.apply(image, intensity, scanlineheight);
Matte effect
PImage processedImage = Matte.apply(image,
matteIntensity, // intensity for the lifting blacks between 0 and 255
contrastIntensity, // intensity for the constrast between 0 and 255
saturationIntensity); // change for the saturation between -0.5 and 0.5
Sabattier effect
// intensity between 0.0 and 1.0
PImage processedImage = Sabattier.apply(image, intensity);
PImage processedImage = Sabattier.applyRed(image, intensity);
PImage processedImage = Sabattier.applyGreen(image, intensity);
PImage processedImage = Sabattier.applyBlue(image, intensity);
Strokes image
random angles | fixed angle |
---|---|
PImage processedImage = Strokes.apply(image, gridSize, lineLength);
PImage processedImage = Strokes.apply(image,
gridSize, // is positive and the area for compound pixels
lineLength, // is positive and the length in pixels for each line
lineWeight, // is positive and the weight of each line in pixel
linesPerGrid, // the number of lines per grid
lineIntensity, // alpha value for each line between 0 and 255
degree, // if set the rotation is fixed in degree, otherwise random
inColor, // true for colors else black and white
backgroundColor); // color for the background
Dithering
// default dithering algorithm is BAYER_4x4
PImage processedImage = Dithering.apply(image);
// change algrithm: BAYER_2x2, BAYER_4x4, BAYER_8x8
PImage processedImage = Dithering.apply(image, Dithering.Algorithm.BAYER_8x8);
// use a curstom kernel (kernel = float[])
PImage processedImage = Dithering.aapply(PImage image, kernel);
Halftone image
PImage processedImage = Halftone.apply(image, dotsize); // dot size in pixel
PImage processedImage = Halftone.apply(image, dotsize, grid); // grid = true, on false honeycomb style
PImage processedImage = Halftone.apply(image, dotsize, foreground, background); // background and foreground colors
PImage processedImage = Halftone.apply(image, dotsize, foreground, background, grid);
PImage processedImage = Halftone.apply(image, dotsize, foreground, background, spacing, grid); // size between dots in pixels
Toning image
// tone is a color and intensity is a value between 0.0 and 1.0
color tone = color(255, 11, 120);
float intensity = 0.8f;
PImage processedImage = Toning.apply(image, tone, intensity);
Split toning image
PImage processedImage = SplitToning.apply(
image,
highlightTone, // Color for highlighs (f.e. color highlightTone = color(211, 180, 21);
intensityHighlights, // intensity for the toning in highlights between 0.0 and 1.0
shadowTone, // Color for the shadows (f.e. color shadowTone = color(124, 32, 201);
intensityShadows); // intensity for the toning in the shadows between 0.0 and 1.0
Sine-Wave image
PImage processedImage = SineWave.apply(image, rowHeight, weight, backgroundColor, wavesColor);
Knitting image
// keeps the original colors
PImage processedImage = Knitting.apply(image, size);
// Sets foreground and background color and uses a threshold
PImage processedImage = Knitting.apply(image, size, threshold, 240, #EE0000);
ASCII image
PImage processedImage = ASCII.apply(image);
// characterset = ASCII.SHORT_SET or ASCII.LONG_SET, another String from black to white
PImage processedImage = ASCII.apply(image, characterset);
PImage processedImage = ASCII.apply(image, characterset, fontSize); // fontSize is an integer
PImage processedImage = ASCII.apply(image, characterset, fontSize, foregroundColor, backgroundColor, toneInColor);
// To get the ASCII image as plain string use the following method
PImage processedImage = ASCII.getAsciiText(image);
Miscellaneous
Stacked images
// Add so many images in the end as you need
PImage processedImage = Stacker.apply(Stacker.ALGORITHM.AVERAGE, image1, image2);
PImage processedImage = Stacker.apply(Stacker.ALGORITHM.MEDIAN, image1, image2);
Blending two images
// intensity is a float between 0.0 and 1.0
PImage processedImage = Blend.apply(image1, image2, intensity);
Special thanks
My special thanks goes to avatarr for implementing and publishing basic algorithms. Also thank you very much Tom Gibara for your great blog post and the implementation of the canny edge detector.
Moreover I thank you Joseph HENRY for the Sine-Wave-effect code and uheinema for the Sabattier code in the Processing Discourse.