• Stars
    star
    283
  • Rank 146,066 (Top 3 %)
  • Language
    Java
  • License
    Apache License 2.0
  • Created over 7 years ago
  • Updated 6 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Spring Boot Starter for Bucket4j

Spring Boot Starter for Bucket4j

Project version overview:

  • 0.9.0 - Bucket4j 8.1.0 - Spring Boot 3.0.x

  • 0.8.0 - Bucket4j 8.1.0 - Spring Boot 2.7.x

  • 0.7.0 - Bucket4j 7.5.0 - Spring Boot 2.7.x

Examples:

Contents

Introduction

This project is a Spring Boot Starter for Bucket4j. It can be used limit the rate of access to your REST APIs.

  • Prevention of DoS Attacks, brute-force logins attempts

  • Request throttling for specific regions, unauthenticated users, authenticated users, not paying users.

The benefit of this project is the configuration of Bucket4j via Spring Boots properties or yaml files. You don’t have to write a single line of code.

Migration Guide

This section is meant to help you migrate your application to new version of this starter project.

Spring Boot Starter Bucket4j 0.9

  • Upgrade to Spring Boot 3

  • Spring Boot 3 requires Java 17 so use at least Java 17

  • Replaced Java 8 compatible Bucket4j dependencies

  • Exclude example webflux-infinispan due to startup problems

Spring Boot Starter Bucket4j 0.8

Compatibility to Java 8

The version 0.8 tries to be compatible with Java 8 as long as Bucket4j is supporting Java 8. With the release of Bucket4j 8.0.0 Bucket4j decided to migrate to Java 11 but provides dedicated artifacts for Java 8. The project is switching to the dedicated artifacts which supports Java 8. You can read more about it here.

Rename property expression to cache-key

The property ..rate-limits[0].expression is renamed to ..rate-limits[0].cache-key. An Exception is thrown on startup if the expression property is configured.

To ensure that the property is not filled falsely the property is marked with @Null. This change requires a Bean Validation implementation.

JSR 380 - Bean Validation implementation required

To ensure that the Bucket4j property configuration is correct an Validation API implementation is required. You can add the Spring Boot Starter Validation which will automatically configures one.

<dependency>
  <groupId>org.springframework.boot</groupId>
  <artifactId>spring-boot-starter-validation</artifactId>
</dependency>

Explicit Configuration of the Refill Speed - API Break

The refill speed of the Buckets can now configured explicitly with the Enum RefillSpeed. You can choose between a greedy or interval refill see the official documentation.

Before 0.8 the refill speed was configured implicitly by setting the fixed-refill-interval property explicit.

bucket4j.filters[0].rate-limits[0].bandwidths[0].fixed-refill-interval=0
bucket4j.filters[0].rate-limits[0].bandwidths[0].fixed-refill-interval-unit=minutes

These properties are removed and replaced by the following configuration:

bucket4j.filters[0].rate-limits[0].bandwidths[0].refill-speed=interval

You can read more about the refill speed configuration here Refill Speed

Getting started

To use the rate limit in your project you have to add the Bucket4j Spring Boot Starter dependency in your project. Additionally you have to choose a caching provider [cache_overview].

The next example uses JSR 107 Ehcache which will be auto configured with the Spring Boot Starter Cache.

<dependency>
	<groupId>com.giffing.bucket4j.spring.boot.starter</groupId>
	<artifactId>bucket4j-spring-boot-starter</artifactId>
</dependency>
<dependency>
	<groupId>org.springframework.boot</groupId>
	<artifactId>spring-boot-starter-cache</artifactId>
</dependency>
<dependency>
	<groupId>org.ehcache</groupId>
	<artifactId>ehcache</artifactId>
</dependency>

Don’t forget to enable the caching feature by adding the @EnableCaching annotation to any of the configuration classes.

The configuration can be done in the application.properties / application.yml. The following configuration limits all requests independently from the user. It allows a maximum of 5 requests within 10 seconds independently from the user.

bucket4j:
  enabled: true
  filters:
  - cache-name: buckets
    url: .*
    rate-limits:
    - bandwidths:
      - capacity: 5
        time: 10
        unit: seconds

For Ehcache 3 you also need a ehcache.xml which can be placed in the classpath. The configured cache name buckets must be defined in the configuration file.

spring:
  cache:
    jcache:
      config: classpath:ehcache.xml
<config xmlns="...">
	<cache alias="buckets">
		<expiry>
			<ttl unit="seconds">3600</ttl>
		</expiry>
		<heap unit="entries">1000000</heap>
	</cache>

</config>

Overview Cache Autoconfiguration

The following list contains the Caching implementation which will be autoconfigured by this starter.

Reactive

Name

cache-to-use

N

JSR 107 -JCache

jcache

Yes

Ignite

jcache-ignite

no

Hazelcast

hazelcast-spring

yes

Hazelcast

hazelcast-reactive

Yes

Infinispan

infinispan

No

Redis-Jedis

redis-jedis

Yes

Redis-Lettuce

redis-lettuce

Yes

Redis-Redisson

redis-redisson

No

Redis-SpringData

redis-springdata

Instead of determine the Caching Provider by the Bucket4j Spring Boot Starter project you can implement the SynchCacheResolver or the AsynchCacheResolver by yourself.

You can enable the cache auto configuration explicitly by using the cache-to-use property name or setting it to an invalid value to disable all auto configurations.

bucket4j.cache-to-use=jcache #

Filter

Filter strategy

The filter strategy defines how the execution of the rate limits will be performed.

bucket4j.filters[0].strategy=first # [first, all]

first

The first is the default strategy. This the default strategy which only executes one rate limit configuration.

all

The all strategy executes all rate limit independently.

Cache Key

To differentiate incoming request you can provide an expression which is used as a key resolver for the underlying cache.

The expression uses the Spring Expression Language (SpEL) which provides the most flexible solution to determine the cache key written in one line of code. The expression compiles to a Java class which will be used.

Depending on the filter method [servlet,webflux,gateway] different SpEL root objects object can be used in the expression so that you have a direct access to the method of these request objects:

  • servlet: jakarta.servlet.http.HttpServletRequest (e.g. getRemoteAddr() or getRequestURI())

  • webflux: org.springframework.http.server.reactive.ServerHttpRequest

  • gateway: org.springframework.http.server.reactive.ServerHttpRequest

The configured URL which is used for filtering is added to the cache-key to provide a unique cache-key for multiple URL. You can read more about it here.

Limiting based on IP-Address:

getRemoteAddress()

Limiting based on Username - If not logged in use IP-Address:

@securityService.username()?: getRemoteAddr()
/**
* You can define custom beans like the SecurityService which can be used in the SpEl expressions.
**/
@Service
public class SecurityService {

	public String username() {
		String name = SecurityContextHolder.getContext().getAuthentication().getName();
		if(name == "anonymousUser") {
			return null;
		}
		return name;
	}

}

Refill Speed

The refill speed defines the period of the regeneration of consumed tokens. This starter supports two types of token regeneration. The refill speed can be set with the following property:

bucket4j.filters[0].rate-limits[0].bandwidths[0].refill-speed=greedy # [greedy,interval]
  • greedy: This is the default refill speed and tries to add tokens as soon as possible.

  • interval: You can alternatively chose interval for the token regeneration which refills the token in a fixed interval.

You can read more about the refill speed in the official documentation.

Skip and Execution Predicates

Skip and Execution Predicates can be used to conditionally skip or execute the rate limiting. Each predicate has a unique name and a self-contained configuration. The following section describes the build in Execution Predicates and how to use them.

Path Predicates

The Path Predicate takes a list of path parameters where any of the paths must match. See PathPattern for the available configuration options. Segments are not evaluated further.

bucket4j.filters[0].rate-limits[0].skip-predicates[0]=PATH=/hello,/world,/admin
bucket4j.filters[0].rate-limits[0].execute-predicates[0]=PATH=/hello,/world,/admin

Matches the paths '/hello', '/world' or '/admin'.

Method Predicate

The Method Predicate takes a list of method parameters where any of the methods must match the used HTTP method.

bucket4j.filters[0].rate-limits[0].skip-predicates[0]=METHOD=GET,POST
bucket4j.filters[0].rate-limits[0].execute-predicates[0]=METHOD=GET,POST

Matches if the HTTP method is 'GET' or 'POST'.

Query Predicate

The Query Predicate takes a single parameter to check for the existence of the query parameter.

bucket4j.filters[0].rate-limits[0].skip-predicates[0]=QUERY=PARAM_1
bucket4j.filters[0].rate-limits[0].execute-predicates[0]=QUERY=PARAM_1

Matches if the query parameter 'PARAM_1' exists.

Header Predicate

The Header Predicate takes to parameters.

  1. First - The name of the Header Parameter which must match exactly

  2. Second - An optional regular expression where any existing header under the name must match

bucket4j.filters[0].rate-limits[0].execute-predicates[0]=Content-Type,.*PDF.*

Matches if the query parameter 'PARAM_1' exists.

Custom Predicate

You can also define you own Execution Predicate:

@Component
@Slf4j
public class MyQueryExecutePredicate extends ExecutePredicate<HttpServletRequest> {

	private String query;

	public String name() {
		// The name which can be used on the properties
		return "MY_QUERY";
	}

	public boolean test(HttpServletRequest t) {
	    // the logic to implement the predicate
		boolean result = t.getParameterMap().containsKey(query);
		log.debug("my-query-parametetr;value:%s;result:%s".formatted(query, result));
		return result;
	}

	public ExecutePredicate<HttpServletRequest> parseSimpleConfig(String simpleConfig) {
		// the configuration which is configured behind the equal sign
		// MY_QUERY=P_1 -> simpleConfig == "P_1"
		//
		this.query = simpleConfig;
		return this;
	}
}

Bucket4j properties

bucket4j.enabled=true # enable/disable bucket4j support
bucket4j.cache-to-use= # If you use multiple caching implementation in your project and you want to choose a specific one you can set the cache here (jcache, hazelcast, ignite, redis)
bucket4j.filters[0].cache-name=buckets # the name of the cache key
bucket4j.filters[0].filter-method=servlet # [servlet,webflux,gateway]
bucket4j.filters[0].filter-order= # Per default the lowest integer plus 10. Set it to a number higher then zero to execute it after e.g. Spring Security.
bucket4j.filters[0].http-content-type=application/json
bucket4j.filters[0].http-status-code=TOO_MANY_REQUESTS # Enum value of org.springframework.http.HttpStatus
bucket4j.filters[0].http-response-body={ "message": "Too many requests" } # the json response which should be added to the body
bucket4j.filters[0].http-response-headers.<MY_CUSTOM_HEADER>=MY_CUSTOM_HEADER_VALUE # You can add any numbers of custom headers
bucket4j.filters[0].hide-http-response-headers=true # Hides response headers like x-rate-limit-remaining or x-rate-limit-retry-after-seconds on rate limiting
bucket4j.filters[0].url=.* # a regular expression
bucket4j.filters[0].strategy=first # [first, all] if multiple rate limits configured the 'first' strategy stops the processing after the first matching
bucket4j.filters[0].rate-limits[0].cache-key=getRemoteAddr() # defines the cache key. It will be evaluated with the Spring Expression Language
bucket4j.filters[0].rate-limits[0].num-tokens=1 # The number of tokens to consume
bucket4j.filters[0].rate-limits[0].execute-condition=1==1 # an optional SpEl expression to decide to execute the rate limit or not
bucket4j.filters[0].rate-limits[0].execute-predicates[0]=PATH=/hello,/world # On the HTTP Path as a list
bucket4j.filters[0].rate-limits[0].execute-predicates[1]=METHOD=GET,POST # On the HTTP Method
bucket4j.filters[0].rate-limits[0].execute-predicates[2]=QUERY=HELLO # Checks for the existence of a Query Parameter
bucket4j.filters[0].rate-limits[0].skip-condition=1==1 # an optional SpEl expression to skip the rate limit
bucket4j.filters[0].rate-limits[0].bandwidths[0].capacity=10
bucket4j.filters[0].rate-limits[0].bandwidths[0].refill-capacity= # default is capacity
bucket4j.filters[0].rate-limits[0].bandwidths[0].time=1
bucket4j.filters[0].rate-limits[0].bandwidths[0].unit=minutes
bucket4j.filters[0].rate-limits[0].bandwidths[0].initial-capacity= # Optional initial tokens
bucket4j.filters[0].rate-limits[0].bandwidths[0].refill-speed=greedy # [greedy,interval]
bucket4j.filters[0].metrics.enabled=true
bucket4j.filters[0].metrics.types=CONSUMED_COUNTER,REJECTED_COUNTER # (optional) if your not interested in the consumed counter you can specify only the rejected counter
bucket4j.filters[0].metrics.tags[0].key=IP
bucket4j.filters[0].metrics.tags[0].expression=getRemoteAddr()
bucket4j.filters[0].metrics.tags[0].types=REJECTED_COUNTER # (optionial) this tag should for example only be applied for the rejected counter
bucket4j.filters[0].metrics.tags[1].key=URL
bucket4j.filters[0].metrics.tags[1].expression=getRequestURI()
bucket4j.filters[0].metrics.tags[2].key=USERNAME
bucket4j.filters[0].metrics.tags[2].expression[email protected]() != null ? @securityService.username() : 'anonym'

# Optional default metric tags for all filters
bucket4j.default-metric-tags[0].key=IP
bucket4j.default-metric-tags[0].expression=getRemoteAddr()
bucket4j.default-metric-tags[0].types=REJECTED_COUNTER

# Hide HTTP response headers

Monitoring - Spring Boot Actuator

Spring Boot ships with a great support for collecting metrics. This project automatically provides metric information about the consumed and rejected buckets. You can extend these information with configurable custom tags like the username or the IP-Address which can then be evaluated in a monitoring system like prometheus/grafana.

bucket4j:
  enabled: true
  filters:
  - cache-name: buckets
    filter-method: servlet
    filter-order: 1
    url: .*
    metrics:
      tags:
        - key: IP
          expression: getRemoteAddr()
          types: REJECTED_COUNTER # for data privacy reasons the IP should only be collected on bucket rejections
        - key: USERNAME
          expression: "@securityService.username() != null ? @securityService.username() : 'anonym'"
        - key: URL
          expression: getRequestURI()
    rate-limits:
      - execute-condition:  "@securityService.username() == 'admin'"
        expression: "@securityService.username()?: getRemoteAddr()"
        bandwidths:
        - capacity: 30
          time: 1
          unit: minutes

Configuration via properties

Simple configuration to allow a maximum of 5 requests within 10 seconds independently from the user.

bucket4j:
  enabled: true
  filters:
  - cache-name: buckets
    url: .*
    rate-limits:
      - bandwidths:
        - capacity: 5
          time: 10
          unit: seconds

Conditional filtering depending of anonymous or logged in user. Because the bucket4j.filters[0].strategy is first you havn’t to check in the second rate-limit that the user is logged in. Only the first one is executed.

bucket4j:
  enabled: true
  filters:
  - cache-name: buckets
    filter-method: servlet
    url: .*
    rate-limits:
      - execute-condition:  @securityService.notSignedIn() # only for not logged in users
        expression: "getRemoteAddr()"
        bandwidths:
        - capacity: 10
          time: 1
          unit: minutes
      - execute-condition: "@securityService.username() != 'admin'" # strategy is only evaluate first. so the user must be logged in and user is not admin
        expression: @securityService.username()
        bandwidths:
        - capacity: 1000
          time: 1
          unit: minutes
      - execute-condition:  "@securityService.username() == 'admin'"  # user is admin
        expression: @securityService.username()
        bandwidths:
        - capacity: 1000000000
          time: 1
          unit: minutes

Configuration of multiple independently filters (servlet|gateway|webflux filters) with specific rate limit configurations.

bucket4j:
  enabled: true
  filters: # each config entry creates one servlet filter or other filter
  - cache-name: buckets # create new servlet filter with bucket4j configuration
    url: /admin*
    rate-limits:
      bandwidths: # maximum of 5 requests within 10 seconds
      - capacity: 5
        time: 10
        unit: seconds
  - cache-name: buckets
    url: /public*
    rate-limits:
      - expression: getRemoteAddress() # IP based filter
        bandwidths: # maximum of 5 requests within 10 seconds
        - capacity: 5
          time: 10
          unit: seconds
  - cache-name: buckets
    url: /users*
    rate-limits:
      - skip-condition: "@securityService.username() == 'admin'" # we don't check the rate limit if user is the admin user
        expression: "@securityService.username()?: getRemoteAddr()" # use the username as key. if authenticated use the ip address
        bandwidths:
        - capacity: 100
          time: 1
          unit: seconds
        - capacity: 10000
          time: 1
          unit: minutes