Multitemporal Land Cover Classification Network
A recurrent neural network approach to encode multi-temporal data for land cover classification.
If you use this repository consider citing
Rußwurm M., Körner M. (2018). Multi-Temporal Land Cover Classification with
Sequential Recurrent Encoders. ISPRS International Journal of Geo-Information, 7(4), 129.
The Tensorflow 1.7
code of the network is located at modelzoo/seqencmodel.py
Further scripts for training and evaluation are provided.
Additionally, Jupyter
notebooks used for accuracy evaluation and extraction of internal network activiations are located in this repo.
The code can be executed after downloading the demo data.
After installing the dependencies the python scripts should be executable.
Additionally, we provided a docker
image with all dependencies already installed.
The code was developed in Tensorflow 1.4
and was later ported to Tensorflow 1.7
.
Network
Similar to an encoding rnn layer of sequence-to-sequence a variable-length input sequence of images is encoded to intermediate reprentation.
Encoding LSTM-RNN:
Network structure
Bidirectional rnn encoder and convolutional softmax classifier, as described in the paper.Dependencies
Implementations of ConvGRU and ConvLSTM forked from https://github.com/carlthome/tensorflow-convlstm-cell
The code is implemented in Python 2.7 check your version via python --version
Get the LSTM/GRU definitions
git clone https://github.com/MarcCoru/tensorflow-convlstm-cell.git utils/convrnn
Create conda environment with python 2.7
conda create -n mtlcc python=2.7 pip
conda activate mtlcc
Python packages
pip install tensorflow-gpu==1.7
pip install configparser # for dataset management
pip install numpy
conda install -y gdal # for evaluation.py
pip install Pillow # for activations.py
pip install rasterio # for tfrecord2tif.py
Download demo data
Download the full dataset (40GB) via
wget https://zenodo.org/record/5712933/files/data_IJGI18.zip
download the raw shapefiles along with prediction and confidence images for both years (1.5 GB)
wget https://zenodo.org/record/5712933/files/showcase.zip
or check the Zenodo page
Convert tfrecord to tif
Convert tfrecord time series folders containing geotiffs by
python tfrecord2tif.py data_IJGI18/datasets/full/480/data16/5887.tfrecord.gz \
--geotransforms data_IJGI18/datasets/full/480/geotransforms.csv
Jupyter notebooks
# start notebook (required dependencies)
jupyter notebook
# within docker
nvidia-docker run -ti -v $PWD/data_IJGI18:/MTLCC/data_IJGI18 -p 8888:8888 marccoru/ijgi18 \
jupyter notebook --ip 0.0.0.0 --allow-root --no-browser
Network training and evaluation
on local machine (requires dependencies installed)
build the network graph for 24px tiles
python modelzoo/seqencmodel.py \
--modelfolder tmp/convgru128 \
--convrnn_filters 128 \
--convcell gru \
--num_classes 17 \
--pix10m 24
train the network graph
python train.py tmp/convgru128 \
--datadir data_IJGI18/datasets/demo/240 \
--temporal_samples 30 \
--epochs 30 \
--shuffle True \
--batchsize 4 \
--train_on 2016 2017
build network graph for 48px tiles
python modelzoo/seqencmodel.py \
--modelfolder tmp/convgru128_48px \
--convrnn_filters 128 \
--convcell gru \
--num_classes 17 \
--pix10m 48
initialize the network and copy weights from 24px to 48 px networks
# initialize
python init_graph.py tmp/convgru128_48px/graph.meta
# optional: compare tensor dimensions of two graphs
python compare_graphs.py tmp/convgru128 tmp/convgru128_48px
# copy network weights from source (24px) network to target (48px) network
python copy_network_weights.py tmp/convgru128 tmp/convgru128_48px
evaluate the model
(writes prediction pngs and statistics on accuracy to tmp/eval/24
)
python evaluate.py tmp/convgru128 \
--datadir data_IJGI18/datasets/demo/240 \
--storedir tmp/eval/24 \
--writetiles \
--writeconfidences \
--batchsize 1 \
--dataset 2017
using docker image (requires nvidia-docker)
# alias for command: start nvidia-docker session and forward folders for data and models
alias dockercmd="nvidia-docker run -ti -v $PWD/data_IJGI18/datasets/demo:/data -v $PWD/tmp:/model -v $PWD/tmp:/output marccoru/ijgi18"
# create model
dockercmd python modelzoo/seqencmodel.py \
--modelfolder /model/convgru128 \
--convrnn_filters 128 \
--convcell gru \
--num_classes 17 \
--pix10m 24
# start training
dockercmd python train.py /model/convgru128 \
--datadir /data/240 \
--temporal_samples 30 \
--epochs 30 \
--shuffle True \
--batchsize 4 \
-d 2016 2017
# evaluate
dockercmd python evaluate.py /model/convgru128 \
--datadir /data/240 \
--storedir /output \
--writetiles \
--writeconfidences \
--batchsize 1 \
--dataset 2017
Extract Activations
activations.py
is a scripted version from the activations section of NetworkVisualization.ipynb
to extract internal activation images from tile 16494
as pngs to tmp/activations
folder run
python activations.py \
data_IJGI18/models/convlstm256_48px/ \
data_IJGI18/datasets/demo/480/ \
tmp/activations \
--dataset 2016 \
--partition eval \
--tile 16494
via docker
alias dockercmd="nvidia-docker run -ti -v $PWD/data_IJGI18/datasets/demo:/data -v $PWD/data_IJGI18/models:/models -v $PWD/tmp:/output marccoru/ijgi18"
dockercmd python activations.py \
/models/convlstm256_48px/ \
/data/480/ \
/output/activations \
--dataset 2016 \
--partition eval \
--tile 16494
Customization
If you plan to customize this code with your data:
check out SimpleTrain.ipynb
This notebook provides a simplified walkthrough from the most important components implemented in this repo
it includes
- the creation of a custom fake dataset in the right format
- the parsing of this dataset
- performing one training step on this dataset