• Stars
    star
    2,766
  • Rank 16,463 (Top 0.4 %)
  • Language
    Java
  • License
    MIT License
  • Created over 6 years ago
  • Updated over 5 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

基于Spark的电影推荐系统,包含爬虫项目、web网站、后台管理系统以及spark推荐系统

基于Spark的电影推荐系统

本次项目是基于大数据过滤引擎的电影推荐系统--“懂你”电影网站,包含了爬虫、电影网站(前端和后端)、后台管理系统以及推荐系统(Spark)。

image

一、爬虫

开发环境: pycharm + python3.6

软件架构: mysql + scrapy

运行环境: 本次爬取的内容在外网,所以需先翻墙后才能成功运行。

项目架构:

image

二、电影网站

开发环境: IntelliJ IDEA + maven + git + linux + powerdesigner

软件架构: mysql + mybatis + spring + springmvc

项目描述: 懂你电影推荐网站是一个基于SSM框架的web项目,类似当前比较流行的豆瓣。用户可以在网站上浏览电影信息和查询电影,并且网站会根据用户的浏览记录给用户进行实时的电影推荐。现已将网站部署在 http://115.159.204.68 网站上,感兴趣的朋友可以自行查看。Git的安装与IDEA和github的集成可以参考博客

项目架构:

image

image

三、后台管理系统

开发环境: IntelliJ IDEA + maven + git + linux + powerdesigner

软件架构: mysql + mybatis + spring + springmvc + easyui

项目描述: 后台管理系统主要对用户信息和电影信息进行管理,如添加删除电影信息和完成用户信息的完善。其中为了更好地保存电影的图片信息,搭建了图片服务器,关于图片服务器FastDFS的搭建可参考博客。后台系统也布置在服务器上,感兴趣的朋友可以通过地址 http://115.159.204.68:8080/ 访问,为大家提供的测试账号为 test,密码为88888888。

项目架构:

image

四、推荐系统(Spark)

开发环境: IntelliJ IDEA + maven + git + linux

软件架构: hadoop + zookeeper + flume + kafka + nginx + spark + hive + mysql

项目描述: 通过在电影网站系统埋点,获取到用户的点击事件(如用户喜欢哪部电影或对某部电影的评分)并将信息传至推荐系统,推荐系统根据该信息做出相应的处理,将推荐结果存入到mysql数据库中,web前端通过查询数据库将推荐的电影展示给用户。推荐流程如下:

image

项目架构:

image

具体步骤:

1.服务器规划(linux镜像为centos6):

  • spark1(ip 192.168.13.134),分配8G内存,4核
  • spark2(ip 192.168.13.135),分配6G内存,4核
  • spark3(ip 192.168.13.136),分配6G内存,4核

2.电影数据集,地址 本次下载的为1m大小的数据集

3.环境的搭建:

1)hdfs搭建

  • spark1上搭建namenode,secondary namenode,datanode
  • spark2上搭建datanode
  • spark3上搭建datanode

2)yarn搭建

  • spark1上搭建resourcemanager,nodemanager
  • spark2上搭建nodemanager
  • spark3上搭建nodemanager

3)mysql搭建,在spark2上搭建

4)hive搭建,在spark1上搭建

5)spark集群搭建,搭建standalone模式,spark1为master,其他为worker

4.数据的清洗: (上传数据至hdfs中,hdfs操作

1)启动 hdfs:  [root@spark1 ~]# start-dfs.sh

2)启动 yarn:  [root@spark1 ~]# start-yarn.sh

3)启动 mysql: [root@spark2 ~]# service mysqld start

4)启动 hive:  [root@spark1 ~]# hive --service metastore

5)启动 spark集群: [root@spark1 spark-1.6.1]# ./sbin/start-all.sh

6)代码(com.zxl.datacleaner.ETL)打包上传(spark-sql与hive集成

  • 代码位于 package com.zxl.datacleaner.ETL,打包为 ETL.jar
  • 运行代码 spark-submit --class com.zxl.datacleaner.ETL --total-executor-cores 2 --executor-memory 2g lib/ETL.jar
  • 成功于hive中建表

5.数据的加工, 根据ALS算法对数据建立模型(ALS论文)

1)启动 hdfs:  [root@spark1 ~]# start-dfs.sh

2)启动 yarn:  [root@spark1 ~]# start-yarn.sh

3)启动 mysql: [root@spark2 ~]# service mysqld start

4)启动 hive:  [root@spark1 ~]# hive --service metastore

5)启动 spark集群: [root@spark1 spark-1.6.1]# ./sbin/start-all.sh

6)代码(com.zxl.datacleaner.RatingData)打包上传,测试建立模型

6.建立模型, 根据RMSE(均方根误差)选取较好的模型

1)启动上述的服务

2)代码(com.zxl.ml.ModelTraining)打包上传,建立模型

注:com.zxl.ml.ModelTraining2中代码训练单个模型,其中参数 rank=50, iteration = 10, lambda = 0.01

  • 代码位于 package com.zxl.ml.ModelTraining,打包为 Spark_Movie.jar
  • 运行代码 spark-submit --class com.zxl.ml.ModelTraining lib/Spark_Movie.jar

7.产生推荐结果

1)启动上述的服务

2)代码(com.zxl.ml.Recommender)打包上传,产生推荐结果

8.数据入库, 存储为所有用户推荐的电影结果,mysql中存入的格式为(userid, movieid,rating)

1)启动上述的服务

2)代码(com.zxl.ml.RecommendForAllUsers)打包上传,数据入库

  • 运行代码 spark-submit --class com.zxl.ml.RecommendForAllUsers --jars lib/mysql-connector-java-5.1.35-bin.jar lib/Spark_Movie.jar

9.实时数据的发送

1)安装nginx,用来接收电影网站上用户的点击信息,写入本地文件

2)安装flume,实时监控本地文件,将数据发送至kafka消息队列中

10.实时数据的接收处理 ,如果打包到服务器运行错误,也可在本地IDEA上运行

1)安装zookeeper

2)安装kafka,用来接收发送数据

3)启动上述的服务

4)启动zookeeper:  [root@spark1 soft]# zkServer.sh start

4)启动flume:[root@spark1 flume]# bin/flume-ng agent -c ./conf/ -f conf/flume-conf.properties -Dflume.root.logger=DEBUG,console -n a1

5)启动kafka:  [root@spark1 kafka_2.11-0.10.1.0]# bin/kafka-server-start.sh config/server.properties

6)代码(com.zxl.datacleaner.PopularMovies2)运行,用于为没有登录或新用户推荐,默认推荐观看最多的5部电影

7)代码运行(需指定jar包 kafka-clients-0.10.1.0.jar)

  • spark-submit --class com.zxl.streaming.SparkDrStreamALS --total-executor-cores 2 --executor-memory 1g --jars lib/kafka-clients-0.10.1.0.jar lib/Spark_Movie.jar

More Repositories

1

News_Spark

基于Spark2.x新闻网大数据实时分析可视化系统项目
Java
498
star
2

e3mall

宜立方商城,完整代码 + 资源,java + spring + springmvc + mybatis 实现
Java
280
star
3

Deep-Learning-Papers-Reading-Roadmap

深度学习论文阅读路线图
278
star
4

Cloud-Note

基于分布式的云笔记(参考某道云笔记),数据存储在redis与hbase中
Java
96
star
5

BigData_AnalysisPage

电商大数据分析平台——静态页面模板
HTML
77
star
6

Machine-Learning-Papers

Machine Learning Classic Papers(机器学习经典论文)
60
star
7

BOS

基于SSH框架的BOS物流管理系统,eclipse+maven+svn+powerdesigner
Java
50
star
8

Reinforcement-Learning

Reinforcement Learning学习之路
Python
30
star
9

Spark-Example

Spark1.6和spark2.2的示例,包含kafka,flume,structuredstreaming,jedis,elasticsearch,mysql,dataframe
Scala
15
star
10

TankWar-Network

联机版坦克大战,使用java实现
Java
14
star
11

MapReduce_ItemCF

基于MapReduce实现物品协同过滤算法(ItemCF)
Java
14
star
12

TankWar

使用JAVA实现的坦克大战,单机版
Java
11
star
13

learngo

Go语言学习(适合初学者入坑)
Go
11
star
14

Snake

贪吃蛇,使用JAVA简单实现
Java
11
star
15

MobileSafe

基于Android的手机安全卫士,简单易上手,熟悉安卓开发的一般流程
Java
10
star
16

Chat

简单页面聊天系统,登录即可连接
Java
9
star
17

Scala-Example

Scala编写示例,用于新手熟悉scala基本语法
Scala
9
star
18

go-spider

Go
5
star
19

Reinforcement-Learning-Papers-at-ICML

Reinforcement Learning Papers at ICML
5
star
20

DistributedSysGuide

从零接触实现分布式系统
Java
5
star
21

ms-shop-parent

Java
1
star