• Stars
    star
    218
  • Rank 181,805 (Top 4 %)
  • Language
    Python
  • Created about 2 years ago
  • Updated about 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A phenaki reproduction using pytorch.

Phenaki

Note: This is work in progress

What is Phenaki?

Phenaki is a text-to-video model which is very similar to the normal text-to-image models that are learnt in a quantized & compressed latent space. Phenaki introduces a first-stage which spatially & temporally compresses the input videos (e.g. a video of shape 100 x 3 x 256 x 256 -> 20 x 32 x 32). This is achieved by temporal & spatial transformers. An interesting thing to note is that the temporal transformer is autoregressive, which eventually can be used to generate videos with variable length by a shifting context. After learning the first stage which can encode / compress & decode / uncompress videos well, the video-generation model is learned in the latent space. The paper uses MaskGIT for that.

First Stage Results

We trained a convolutional 3D VQGAN with a spatial compression of f8 and temporal compression of f2. Videos of (10+1)x128x128 are encoded to a latent size of (5+1)x16x16. cViViT proposes to use a separate stem to encode the first frame. In our early experiments we saw that this stem would not receive a lot gradients and thus evolve very slowly, while the rest of the frames looked much better. As a result, we only use a single stem for all frames at once. To still enable image only training in the second stage, we learn an additional frame and prepend it to the start of the sequence, such that when downsampling temporally by 2, the learned and first frame would be encoded into one and the model could learn to ignore the learned embedding and only encode the information from the first frame. We trained the model (43M parameters) for 100k steps, with a batch size of 64 on 8 A100 for 1 day. In the following video the right one is the original and the left one is reconstructed, while in the table top rows represent the original frames and bottom are reconstructed.

1.mp4
108100 103500
109000 109500

Current Progress:

  • Implement cViViT
  • Implement convolutional baseline for first stage
  • Implement Loss (without video perceptual loss)
  • Implement Training code
  • Download dataset
  • Data pipeline
  • Efficient data pipeline
  • Test first stage
  • Small training first stage
  • Full training first stage
  • Implement MaskGIT
  • Adjust data pipeline for second stage training (include image-only training data)
  • Test second stage
  • Small training second stage
  • Full training second stage
  • ....

TODO

  • Activate KMeans in VQGAN training
  • Move dataset to s3

Open Questions:

  • does the first-stage use a pretrained ViT as proposed in ViViT?
  • how to do positional encoding? current approach
  • best way to construct dataloader for videos?
  • The dataset 'Moments in Time' does not have captions, and only contains labels. How are captions generated? "A video of {label}"?

More Repositories

1

Open-Assistant

OpenAssistant is a chat-based assistant that understands tasks, can interact with third-party systems, and retrieve information dynamically to do so.
Python
37,011
star
2

audio-dataset

Audio Dataset for training CLAP and other models
Python
616
star
3

CLIP_benchmark

CLIP-like model evaluation
Jupyter Notebook
601
star
4

dalle2-laion

Pretrained Dalle2 from laion
Python
499
star
5

CLAP

Contrastive Language-Audio Pretraining
Python
479
star
6

natural_voice_assistant

Python
439
star
7

laion-3d

Collect large 3d dataset and build models
253
star
8

aesthetic-predictor

A linear estimator on top of clip to predict the aesthetic quality of pictures
Jupyter Notebook
199
star
9

Open-Instruction-Generalist

Open Instruction Generalist is an assistant trained on massive synthetic instructions to perform many millions of tasks
Python
195
star
10

ldm-finetune

Home of `erlich` and `ongo`. Finetune latent-diffusion/glid-3-xl text2image on your own data.
Python
169
star
11

scaling-laws-openclip

Reproducible scaling laws for contrastive language-image learning (https://arxiv.org/abs/2212.07143)
Jupyter Notebook
152
star
12

CLIP-based-NSFW-Detector

Python
135
star
13

laion-datasets

Description and pointers of laion datasets
HTML
131
star
14

laion-dreams

Aim for the moon. If you miss, you may hit a star.
121
star
15

laion.ai

HTML
110
star
16

AIW

Alice in Wonderland code base for experiments and raw experiments data
Python
108
star
17

LAION-5B-WatermarkDetection

Python
102
star
18

video-clip

Let's make a video clip
92
star
19

Open-GIA

O-GIA is an umbrella for research, infrastructure and projects ecosystem that should provide open source, reproducible datasets, models, applications & safety tools for Open Generalist Interactive Agents (O-GIA). O-GIA systems will act in collaboration with human or autonomously, supporting various kind of validated decision making and assistance.
91
star
20

General-GPT

Jupyter Notebook
64
star
21

Discord-Scrapers

Implementation of a discord channel scraper to generate datasets.
Python
60
star
22

Text-to-speech

Python
58
star
23

Big-Interleaved-Dataset

Big-Interleaved-Dataset
Python
57
star
24

riverbed

Tools for content datamining and NLP at scale
Python
41
star
25

OCR-ensemble

Jupyter Notebook
38
star
26

Conditional-Pretraining-of-Large-Language-Models

Python
37
star
27

interesting-text-datasets

33
star
28

blade2blade

Adversarial Training and SFT for Bot Safety Models
Python
32
star
29

temporal-embedding-aggregation

Aggregating embeddings over time
Python
31
star
30

deep-image-diffusion-prior

Inverts CLIP text embeds to image embeds and visualizes with deep-image-prior.
Jupyter Notebook
31
star
31

watermark-detection

A repository containing datasets and tools to train a watermark classifier.
Python
31
star
32

medical

This repository will be a summary and outlook on all our open, medical, AI advancements.
Jupyter Notebook
28
star
33

Anh

Anh - LAION's multilingual assistant datasets and models
Python
27
star
34

laion50BU

Un-*** 50 billions multimodality dataset
24
star
35

conditioned-prior

(wip) Use LAION-AI's CLIP "conditoned prior" to generate CLIP image embeds from CLIP text embeds.
Python
18
star
36

LAION-SAFETY

An open toolbox for NSFW & toxicity detection
Jupyter Notebook
16
star
37

opendream

Frontend (and soon also midleware and backend) for a new, opensource image generation platform.
TypeScript
14
star
38

laion5B-paper

Building the laion5B paper
13
star
39

laion-dedup

Python
13
star
40

notebooks

A collection of generative and training notebooks getting mirrored to google colab.
Jupyter Notebook
12
star
41

laionide

This repository contains training code and checkpoitns for finetuning glide.
Python
12
star
42

super-resolution

This is the LAION repository for creating open super-resolution models with the help of LAION-5B subsets.
11
star
43

dataset-spec

Describe the format of image/text datasets
Python
10
star
44

LAION-PEOPLE

This project provides a data set with bounding boxes, body poses, 3D face meshes & captions of people from our LAION-2.2B. Additionally it provides clusters based on the poses and face meshes and pose-related captions based on these cluster assignments.
10
star
45

image-deduplication-testset

HTML
8
star
46

project-menu

Projects at LAION
8
star
47

laion-ai.github.io

laion github website
Svelte
6
star
48

dataset-usage

This repository is a summary of all systems and scientific papers that use LAION datasets.
6
star
49

repository-overview

This repository will give a quick overview of all projects and repositories from LAION.
5
star
50

LionizeR

Experiments with Summarization, Long Context and Retrieval
Python
4
star
51

KAISER

Knowledge Acquisition and Interlinking via Semantic Embeddings and Reasoning
4
star
52

lucidrains-projects

A summary of all lucidrains repositores and links to training / research approaches by LAION or other communities.
Jupyter Notebook
3
star
53

decentralized-learning

A basic setup for decentralized-learning that can be used for training future DALLE/CLIP/CLAP models.
3
star
54

diffusion-prior

DALL-E2 diffusion prior
Python
3
star
55

GIF

General / Global Inference Framework
Python
3
star
56

website

This is the development repository of the LAION-AI website.
HTML
3
star
57

safety-pipeline

A collection of safety classifiers and models to process image and texts.
Python
3
star
58

NeoGen

3
star
59

laion5b-subsets

Creating subsets from laion5b via embeddings search
Jupyter Notebook
2
star
60

human_artifacts

A repo containing images for artifact annotation.
2
star
61

public-relations

All media / publicity on LAION and related stuff!
2
star
62

public-domain-images

A collection of public domain images donated for ML training.
2
star
63

math_problems-step-by-step_solutions

Here we provide and collect many functions to generate math problem and step by step solutions for LLM training
Python
2
star
64

language-models

2
star
65

dataset-inference

The new repository for the genral inference pipeline.
Python
2
star
66

introduction-resources

Recommended intro resources
2
star
67

balanced-laion5b

This repository shall help finding a good distribution for huge datasets like LAION-5B for more efficient training.
2
star
68

hand-inference

A model to run hand inference on a cluster.
Jupyter Notebook
2
star
69

BUD-E_V1.0

BUD-E (Buddy) is an open-source voice assistant framework that facilitates seamless interaction with AI models and APIs, enabling the creation and integration of diverse skills for educational and research applications.
1
star
70

laion5b-bias

This repository is a collection of found biases in the LAION-5B dataset.
1
star
71

dataset-tasks

datasets that should be downloaded & converted to our standard training formart.
1
star
72

LAION-AUDIO

This repository contains prompts & best practices to annotate audio clips with a very high degree of details using Audio-Language-Models
1
star
73

AIW_webpage

Alice in Wonderland project and initiative webpage
1
star