• Stars
    star
    353
  • Rank 120,322 (Top 3 %)
  • Language
    Python
  • License
    MIT License
  • Created almost 5 years ago
  • Updated 3 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Python library for CMA Evolution Strategy.

CMA-ES

Software License PyPI - Downloads

Lightweight Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [1] implementation.

visualize-six-hump-camel

News

Installation

Supported Python versions are 3.7 or later.

$ pip install cmaes

Or you can install via conda-forge.

$ conda install -c conda-forge cmaes

Usage

This library provides an "ask-and-tell" style interface.

import numpy as np
from cmaes import CMA

def quadratic(x1, x2):
    return (x1 - 3) ** 2 + (10 * (x2 + 2)) ** 2

if __name__ == "__main__":
    optimizer = CMA(mean=np.zeros(2), sigma=1.3)

    for generation in range(50):
        solutions = []
        for _ in range(optimizer.population_size):
            x = optimizer.ask()
            value = quadratic(x[0], x[1])
            solutions.append((x, value))
            print(f"#{generation} {value} (x1={x[0]}, x2 = {x[1]})")
        optimizer.tell(solutions)

And you can use this library via Optuna [2], an automatic hyperparameter optimization framework. Optuna's built-in CMA-ES sampler which uses this library under the hood is available from v1.3.0 and stabled at v2.0.0. See the documentation or v2.0 release blog for more details.

import optuna

def objective(trial: optuna.Trial):
    x1 = trial.suggest_uniform("x1", -4, 4)
    x2 = trial.suggest_uniform("x2", -4, 4)
    return (x1 - 3) ** 2 + (10 * (x2 + 2)) ** 2

if __name__ == "__main__":
    sampler = optuna.samplers.CmaEsSampler()
    study = optuna.create_study(sampler=sampler)
    study.optimize(objective, n_trials=250)

CMA-ES variants

CMA-ES with Margin [3]

CMA-ES with Margin introduces a lower bound on the marginal probability associated with each discrete dimension so that samples can avoid being fixed to a single point. It can be applied to mixed spaces of continuous (float) and discrete (including integer and binary).

CMA-ES CMA-ESwM
CMA-ES CMA-ESwM

The above figures are taken from EvoConJP/CMA-ES_with_Margin.

Source code
import numpy as np
from cmaes import CMAwM


def ellipsoid_onemax(x, n_zdim):
    n = len(x)
    n_rdim = n - n_zdim
    r = 10
    if len(x) < 2:
        raise ValueError("dimension must be greater one")
    ellipsoid = sum([(1000 ** (i / (n_rdim - 1)) * x[i]) ** 2 for i in range(n_rdim)])
    onemax = n_zdim - (0.0 < x[(n - n_zdim) :]).sum()
    return ellipsoid + r * onemax


def main():
    binary_dim, continuous_dim = 10, 10
    dim = binary_dim + continuous_dim
    bounds = np.concatenate(
        [
            np.tile([-np.inf, np.inf], (continuous_dim, 1)),
            np.tile([0, 1], (binary_dim, 1)),
        ]
    )
    steps = np.concatenate([np.zeros(continuous_dim), np.ones(binary_dim)])
    optimizer = CMAwM(mean=np.zeros(dim), sigma=2.0, bounds=bounds, steps=steps)
    print(" evals    f(x)")
    print("======  ==========")

    evals = 0
    while True:
        solutions = []
        for _ in range(optimizer.population_size):
            x_for_eval, x_for_tell = optimizer.ask()
            value = ellipsoid_onemax(x_for_eval, binary_dim)
            evals += 1
            solutions.append((x_for_tell, value))
            if evals % 300 == 0:
                print(f"{evals:5d}  {value:10.5f}")
        optimizer.tell(solutions)

        if optimizer.should_stop():
            break


if __name__ == "__main__":
    main()

Source code is also available here.

Warm Starting CMA-ES [4]

Warm Starting CMA-ES is a method to transfer prior knowledge on similar HPO tasks through the initialization of CMA-ES. Here is the result of an experiment that tuning LightGBM for Kaggle's Toxic Comment Classification Challenge data, a multilabel classification dataset. In this benchmark, we use 10% of a full dataset as the source task, and a full dataset as the target task. Please refer the paper and/or https://github.com/c-bata/benchmark-warm-starting-cmaes for more details of experiment settings.

benchmark-lightgbm-toxic

Source code
import numpy as np
from cmaes import CMA, get_warm_start_mgd

def source_task(x1: float, x2: float) -> float:
    b = 0.4
    return (x1 - b) ** 2 + (x2 - b) ** 2

def target_task(x1: float, x2: float) -> float:
    b = 0.6
    return (x1 - b) ** 2 + (x2 - b) ** 2

if __name__ == "__main__":
    # Generate solutions from a source task
    source_solutions = []
    for _ in range(1000):
        x = np.random.random(2)
        value = source_task(x[0], x[1])
        source_solutions.append((x, value))

    # Estimate a promising distribution of the source task,
    # then generate parameters of the multivariate gaussian distribution.
    ws_mean, ws_sigma, ws_cov = get_warm_start_mgd(
        source_solutions, gamma=0.1, alpha=0.1
    )
    optimizer = CMA(mean=ws_mean, sigma=ws_sigma, cov=ws_cov)

    # Run WS-CMA-ES
    print(" g    f(x1,x2)     x1      x2  ")
    print("===  ==========  ======  ======")
    while True:
        solutions = []
        for _ in range(optimizer.population_size):
            x = optimizer.ask()
            value = target_task(x[0], x[1])
            solutions.append((x, value))
            print(
                f"{optimizer.generation:3d}  {value:10.5f}"
                f"  {x[0]:6.2f}  {x[1]:6.2f}"
            )
        optimizer.tell(solutions)

        if optimizer.should_stop():
            break

The full source code is available here.

Separable CMA-ES [5]

sep-CMA-ES is an algorithm which constrains the covariance matrix to be diagonal. Due to the reduction of the number of parameters, the learning rate for the covariance matrix can be increased. Consequently, this algorithm outperforms CMA-ES on separable functions.

Source code
import numpy as np
from cmaes import SepCMA

def ellipsoid(x):
    n = len(x)
    if len(x) < 2:
        raise ValueError("dimension must be greater one")
    return sum([(1000 ** (i / (n - 1)) * x[i]) ** 2 for i in range(n)])

if __name__ == "__main__":
    dim = 40
    optimizer = SepCMA(mean=3 * np.ones(dim), sigma=2.0)
    print(" evals    f(x)")
    print("======  ==========")

    evals = 0
    while True:
        solutions = []
        for _ in range(optimizer.population_size):
            x = optimizer.ask()
            value = ellipsoid(x)
            evals += 1
            solutions.append((x, value))
            if evals % 3000 == 0:
                print(f"{evals:5d}  {value:10.5f}")
        optimizer.tell(solutions)

        if optimizer.should_stop():
            break

Full source code is available here.

IPOP-CMA-ES [6]

IPOP-CMA-ES is a method to restart CMA-ES with increasing population size like below.

visualize-ipop-cmaes-himmelblau

Source code
import math
import numpy as np
from cmaes import CMA

def ackley(x1, x2):
    # https://www.sfu.ca/~ssurjano/ackley.html
    return (
        -20 * math.exp(-0.2 * math.sqrt(0.5 * (x1 ** 2 + x2 ** 2)))
        - math.exp(0.5 * (math.cos(2 * math.pi * x1) + math.cos(2 * math.pi * x2)))
        + math.e + 20
    )

if __name__ == "__main__":
    bounds = np.array([[-32.768, 32.768], [-32.768, 32.768]])
    lower_bounds, upper_bounds = bounds[:, 0], bounds[:, 1]

    mean = lower_bounds + (np.random.rand(2) * (upper_bounds - lower_bounds))
    sigma = 32.768 * 2 / 5  # 1/5 of the domain width
    optimizer = CMA(mean=mean, sigma=sigma, bounds=bounds, seed=0)

    for generation in range(200):
        solutions = []
        for _ in range(optimizer.population_size):
            x = optimizer.ask()
            value = ackley(x[0], x[1])
            solutions.append((x, value))
            print(f"#{generation} {value} (x1={x[0]}, x2 = {x[1]})")
        optimizer.tell(solutions)

        if optimizer.should_stop():
            # popsize multiplied by 2 (or 3) before each restart.
            popsize = optimizer.population_size * 2
            mean = lower_bounds + (np.random.rand(2) * (upper_bounds - lower_bounds))
            optimizer = CMA(mean=mean, sigma=sigma, population_size=popsize)
            print(f"Restart CMA-ES with popsize={popsize}")

Full source code is available here.

BIPOP-CMA-ES [7]

BIPOP-CMA-ES applies two interlaced restart strategies, one with an increasing population size and one with varying small population sizes.

visualize-bipop-cmaes-himmelblau

Source code
import math
import numpy as np
from cmaes import CMA

def ackley(x1, x2):
    # https://www.sfu.ca/~ssurjano/ackley.html
    return (
        -20 * math.exp(-0.2 * math.sqrt(0.5 * (x1 ** 2 + x2 ** 2)))
        - math.exp(0.5 * (math.cos(2 * math.pi * x1) + math.cos(2 * math.pi * x2)))
        + math.e + 20
    )

if __name__ == "__main__":
    bounds = np.array([[-32.768, 32.768], [-32.768, 32.768]])
    lower_bounds, upper_bounds = bounds[:, 0], bounds[:, 1]

    mean = lower_bounds + (np.random.rand(2) * (upper_bounds - lower_bounds))
    sigma = 32.768 * 2 / 5  # 1/5 of the domain width
    optimizer = CMA(mean=mean, sigma=sigma, bounds=bounds, seed=0)

    n_restarts = 0  # A small restart doesn't count in the n_restarts
    small_n_eval, large_n_eval = 0, 0
    popsize0 = optimizer.population_size
    inc_popsize = 2

    # Initial run is with "normal" population size; it is
    # the large population before first doubling, but its
    # budget accounting is the same as in case of small
    # population.
    poptype = "small"

    for generation in range(200):
        solutions = []
        for _ in range(optimizer.population_size):
            x = optimizer.ask()
            value = ackley(x[0], x[1])
            solutions.append((x, value))
            print(f"#{generation} {value} (x1={x[0]}, x2 = {x[1]})")
        optimizer.tell(solutions)

        if optimizer.should_stop():
            n_eval = optimizer.population_size * optimizer.generation
            if poptype == "small":
                small_n_eval += n_eval
            else:  # poptype == "large"
                large_n_eval += n_eval

            if small_n_eval < large_n_eval:
                poptype = "small"
                popsize_multiplier = inc_popsize ** n_restarts
                popsize = math.floor(
                    popsize0 * popsize_multiplier ** (np.random.uniform() ** 2)
                )
            else:
                poptype = "large"
                n_restarts += 1
                popsize = popsize0 * (inc_popsize ** n_restarts)

            mean = lower_bounds + (np.random.rand(2) * (upper_bounds - lower_bounds))
            optimizer = CMA(
                mean=mean,
                sigma=sigma,
                bounds=bounds,
                population_size=popsize,
            )
            print("Restart CMA-ES with popsize={} ({})".format(popsize, poptype))

Full source code is available here.

Benchmark results

Rosenbrock function Six-Hump Camel function
rosenbrock six-hump-camel

This implementation (green) stands comparison with pycma (blue). See benchmark for details.

Links

Projects using cmaes:

  • Optuna : A hyperparameter optimization framework that supports CMA-ES using this library under the hood.
  • (If you have a project which uses cmaes and want your own project to be listed here, please submit a GitHub issue.)

Other libraries:

I respect all libraries involved in CMA-ES.

  • pycma : Most famous CMA-ES implementation by Nikolaus Hansen.
  • pymoo : Multi-objective optimization in Python.
  • evojax : EvoJAX provides a JAX-port of this library.
  • evosax : evosax provides JAX-based CMA-ES and sep-CMA-ES implementation, which is inspired by this library.

References:

More Repositories

1

layout-dm

LayoutDM: Discrete Diffusion Model for Controllable Layout Generation [Inoue+, CVPR2023]
Python
214
star
2

SuperNormal

[CVPR 2024] Official implementation of "SuperNormal: Neural Surface Reconstruction via Multi-View Normal Integration"
Python
127
star
3

RALF

[CVPR24 Oral] Official repository for RALF: Retrieval-Augmented Layout Transformer for Content-Aware Layout Generation
Python
93
star
4

minituna

A toy hyperparameter optimization framework intended for understanding Optuna's internal design.
Python
83
star
5

derendering-text

Jupyter Notebook
77
star
6

pointcloud2gazebo

pointcloud2gazebo is a package that allows you to create a Gazebo World from a 3D point cloud.
Python
72
star
7

canvas-vae

Implementation of CanvasVAE: Learning to Generate Vector Graphic Documents, ICCV 2021
Python
59
star
8

flex-dm

Towards Flexible Multi-modal Document Models [Inoue+, CVPR2023]
Python
54
star
9

OpenCOLE

OpenCOLE: Towards Reproducible Automatic Graphic Design Generation [Inoue+, CVPRW2024 (GDUG)]
Python
41
star
10

EBPMDB

่จผๆ‹ ใซๅŸบใฅใๆ”ฟ็ญ–ใฎใŸใ‚ใฎ็ ”็ฉถๆˆๆžœใƒ‡ใƒผใ‚ฟใƒ™ใƒผใ‚น
TypeScript
29
star
11

sprite-decompose

Fast Sprite Decomposition from Animated Graphics [ECCV2024]
Python
25
star
12

nav2-keepout-zone-map-creator

nav2-keepout-zone-map-creator is a tool that allows you to create a Keepout Zone map from an Occupancy Grid Map and 3D point cloud.
Python
23
star
13

webcolor

Official implementation of Generative Colorization of Structured Mobile Web Pages, WACV 2023.
Python
21
star
14

camera

19
star
15

preferentialBO

(ICML2023) Towards Practical Preferential Bayesian Optimization with Skew Gaussian Processes
Python
10
star
16

filtered-dpo

Introducing Filtered Direct Preference Optimization (fDPO) that enhances language model alignment with human preferences by discarding lower-quality samples compared to those generated by the learning model
Python
9
star
17

multipalette

Implementation of Color Recommendation for Vector Graphic Documents based on Multi-Palette Representation, WACV 2023
Jupyter Notebook
8
star
18

regularized-bon

Code of "Regularized Best-of-N Sampling to Mitigate Reward Hacking for Language Model Alignment" (2024).
Python
7
star
19

text2palette

Implementation of "Multimodal Color Recommendation for Vector Graphic Documents" ACM MM'23
Python
7
star
20

thresholded-lasso-bandit

Python
5
star
21

LCTG-Bench

LCTG Bench: LLM Controlled Text Generation Benchmark
Python
5
star
22

japanese-nli-model

This repository provides the code for Japanese NLI model, a fine-tuned masked language model.
Jupyter Notebook
4
star
23

mbr-anomaly

Code for "On the True Distribution Approximation of Minimum Bayes-Risk Decoding," NAACL 2024
Python
4
star
24

annotation-efficient-po

Code of "Annotation-Efficient Preference Optimization for Language Model Alignment"
Python
4
star
25

CM-VQVAE

Research code for the WACV2024 paper "Complementary-Contradictory Feature Regularization against Multimodal Overfitting"
Python
4
star
26

cropping-design-constraints

codes for evaluating image cropping under design constraints
Python
4
star
27

mutant-ftrl

Python
3
star
28

mcts-capacity-expansion

Python
3
star
29

camera3

CAMERA3: An Evaluation Dataset for Controllable Ad Text Generation in Japanese
3
star
30

model-based-mbr

Code of "Model-Based Minimum Bayes Risk Decoding for Text Generation" 2024
Jupyter Notebook
3
star
31

tdc-typography-generation

This repository contains codes for https://arxiv.org/abs/2309.02099
Python
3
star
32

m2wu

Python
2
star
33

diverse-mbr

Code of "Generating Diverse and High-Quality Texts by Minimum Bayes Risk Decoding" 2024
Python
2
star
34

adaptively-perturbed-md

Python
2
star
35

AdTEC

The AdTEC dataset is designed to evaluate the quality of ad texts from multiple aspects, considering practical advertising operations.
2
star
36

CondLoRA

Code for our paper "A Single Linear Layer Yields Task-Adapted Low-Rank Matrices"
Python
1
star
37

dte-ml-adjustment

Code for "Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction"
R
1
star
38

python-dte-adjustment

Jupyter Notebook
1
star
39

text2traj2text

[INLG 2024] Official repository for Text2Traj2Text: Learning-by-Synthesis Framework for Contextual Captioning of Human Movement Trajectories
Python
1
star
40

adaptive-mbr

Code of "Hyperparameter-Free Approach for Faster Minimum Bayes Risk Decoding" 2024
Python
1
star
41

DaycareCP

Code for "Stable Matchings in Practice: A Constraint Programming Approach"(Zhaohong, Sun et al., AAAI2024, Paper)
Python
1
star