• Stars
    star
    163
  • Rank 231,141 (Top 5 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 3 years ago
  • Updated about 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

This repository allows you to anonymize sensitive information in images/videos. The solution is fully compatible with the DL-based training/inference solutions that we already published/will publish for Object Detection and Semantic Segmentation.

BMW-Anonymization-Api

Data privacy and individuals’ anonymity are and always have been a major concern for data-driven companies.

Therefore, we designed and implemented an anonymization API that localizes and obfuscates (i.e. hides) sensitive information in images/videos in order to preserve the individuals' anonymity. The main features of our anonymization tool are the following:

  • Agnostic in terms of localization techniques: our API currently supports Semantic segmentation or Object Detection.
  • Modular in terms of sensitive information: the user can train a Deep Learning (DL) model for object detection and semantic segmentation to localize the sensitive information she/he wishes to protect, e.g., individual's face or body, personal belongings, vehicles...
  • Scalable in terms of anonymization techniques: our API currently supports pixelating, blurring, blackening (masking). Also, additinal anonymization techniques can be configured as stated below. For the highest level of privacy, we recommend using the blackening technique with degree 1.
  • Supports DL-based models optimized via the Intel® OpenVINOâ„¢ toolkit v2021.1 for CPU usage: DL-based models optimized and deployed via the Openvino Segmentation Inference API and the Openvino Detection Inference API can also be used.
  • Compatible with the BMW Deep Learning tools: DL models trained via our training and deployed via our inference APIs are compatible with this anonymization API.

animated

General Architecture & Deployment Mode:

Our anonymization API receives an image along with a JSON object through which the user specifies mainly:

  • The sensitive information she/he wishes to obfuscate.
  • The anonymization technique.
  • The anonymization degree.
  • The localization technique.

You can deploy the anonymization API either:

  • As a standalone docker container which can be connected to other inference APIs (object detection or semantic segmentation) deployed within a standalone docker container as well.
  • As a network of docker containers along with other inference APIs running on the same machine via docker-compose. (please check the following link for the docker-compose deployment).

Prerequisites:

  • docker
  • docker-compose

Check for prerequisites

To check if docker-ce is installed:

docker --version

To check if docker-compose is installed:

docker-compose --version

Install prerequisites

Ubuntu

To install Docker and Docker Compose on Ubuntu, please follow the link.

Windows 10

To install Docker on Windows, please follow the link.

P.S: For Windows users, open the Docker Desktop menu by clicking the Docker Icon in the Notifications area. Select Settings, and then Advanced tab to adjust the resources available to Docker Engine.

Build The Docker Image

As mentioned before, this container can be deployed using either docker or docker-compose.

  • If you wish to deploy this API using docker-compose, please refer to following link. After deploying the API with docker compose, please consider returning to this documentation for further information about the API Endpoints and use configuration file sample sections.

  • If you wish to deploy this API using docker, please continue with the following docker build and run commands.

In order to build the project run the following command from the project's root directory:

 docker build -t anonymization_api -f docker/dockerfile .

Build behind a proxy

In order to build the image behind a proxy use the following command in the project's root directory:

docker build --build-arg http_proxy='your_proxy' --build-arg https_proxy='your_proxy' -t anonymization_api -f ./docker/dockerfile .

Run the docker container

To run the API, go to the API's directory and run the following:

Using Linux based docker:

sudo docker run -itv $(pwd)/src/main:/main -v $(pwd)/jsonFiles:/jsonFiles -p <port_of_your_choice>:4343 anonymization_api
Behind a proxy:
sudo docker run -itv $(pwd)/src/main:/main -v $(pwd)/jsonFiles:/jsonFiles  --env HTTP_PROXY="" --env HTTPS_PROXY="" --env http_proxy="" --env https_proxy="" -p 5555:4343 anonymization_api

Using Windows based docker:

docker run -itv ${PWD}/src/main:/main -v ${PWD}/jsonFiles:/jsonFiles -p <port_of_your_choice>:4343 anonymization_api

The API file will be run automatically, and the service will listen to http requests on the chosen port.

API Endpoints

To see all available endpoints, open your favorite browser and navigate to:

http://<machine_IP>:<docker_host_port>/docs

Endpoints summary

Configuration

/set_url (POST)

Set the URL of the inference API that you wish to connect to the Anonymization API. If the specified URL is unreachable due to connection problems, it will not be added to the JSON url_configuration file. The URL should be specified in the following format "http://ip:port/".

/list_urls (GET)

Returns the URLs of the inference APIs that were already configured via the /set_url POST request.

/remove_url (POST)

Removes the specified URL from the JSON url_configuration file

/remove_all_urls (POST)

Removes all available urls from the JSON url_configuration file

/available_methods/ (GET)

After setting the inference URLs via the /set_url request, the user can view the Anonymization API's configuration by issuing the /available_methods request. Mainly the user can view (i) the supported sensitive information (label_names) , (ii) the supported localization techniques, (iii) the inference URLs and (iv) the DL model name that are configured in the deployed anonymization API as seen below.

Anonymization

/anonymize/ (POST)

Anonymizes the input image based on the user's JSON configuration file

/anonymize_video/ (POST)

Anonymizes a video based on the user's sensitive info and save the anonymized video in src/main/anonymized_videos under <original_video_name>_TIMESTAMP.mp4

Video Anonymization Time

The video might take a while, actually you can estimate the time that it may take by using the following formula: Video_Anonymization_Time = Video_Length x Number_Of_Frames_Per_Second x Anonymization_Time_Of_Each_Frame

User configuration file sample

In order to anonymize an image, the user should specify the different details in the user's JSON configuration file

Please check a sample in the below image:

Note that the URL field is an optional field that you can add in case you wanted to use a specific URL of a running API. You can just add the URL as an optional field in this file as shown in the first sensitive info. In case this field is not specified, the URL defined in the url_configuration.json file will be used by default if it matches all the requirements.

To add a new technique to the API:

Please refer to the following link add new technique documentation for more information on how to add a new anonymization technique to the APIs with common and custom labels.

Benchmark

Object Detection

GPU Network Width Height Inference Time (s) Anonymization Time (s) Total Time (s)
Titan RTX yolov4 640 768 0.2 0.07 0.27
Titan RTX yolov4 1024 768 0.4 0.14 0.54
Titan RTX yolov4 2048 1024 1.2 0.6 1.8
Titan RTX yolov4 3840 2160 4.8 0.6 5.4

Object Detection with OpenVINO model and Intel Core i7-1185G7

The model was trained with the TensorFlow Object Detection API (TF version 1.14) and then converted to OpenVINO IR using Intel® OpenVINO™ toolkit v2021.4
Results may vary. For workloads and configurations visit: www.intel.com/PerformanceIndex and Legal Information.

CPU Network Precision Width Height Inference Time (s) Anonymization Time (s) Total Time (s)
for Avg, Max, Min
Intel Core
i7-1185G7
Faster R-CNN
Input Shape: [3,600,600]
FP32 1024 768 0.51 0.09 0.60, 0.67, 0.54
Intel Core
i7-1185G7
Faster R-CNN
Input Shape: [3,600,600]
FP32 2048 1536 0.56 0.24 0.80, 0.97, 0.70
Intel Core
i7-1185G7
Faster R-CNN
Input Shape: [3,600,600]
INT8 1024 768 0.16 0.09 0.25, 0.27, 0.22
Intel Core
i7-1185G7
Faster R-CNN
Input Shape: [3,600,600]
INT8 2048 1536 0.19 0.24 0.43, 0.56, 0.36

Semantic Segmentation

GPU Network Width Height Inference Time (s) Anonymization Time (s) Total Time (s)
Titan RTX psp resnet 101 640 768 0.2 0.8 1.1
Titan RTX psp resnet 101 1024 768 0.3 0.8 1.1
Titan RTX psp resnet 101 2048 1024 0.9 1.0 1.9
Titan RTX psp resnet 101 3840 2160 2.0 3.0 5.0

Possible Error

  • You may encounter the below error when running the docker container at startup in standalone version or docker-compose version url_error

  • In case you do, please make sure that the URL of the inference APIs listed in the jsonFiles/url_configuration.json are still recheable. A possible solution would be to empty jsonFiles/url_configuration.json as seen below before starting the container:

    {
    "urls": [
    ]
    }
    

Acknowledgments

Ghenwa Aoun

Antoine Charbel, inmind.ai, Beirut, Lebanon

Roy Anwar

Fady Dib

Jimmy Tekli, BMW Innovation Lab, Munich, Germany

OpenVINO Toolkit

intel.com

robotron.de

More Repositories

1

BMW-TensorFlow-Training-GUI

This repository allows you to get started with a gui based training a State-of-the-art Deep Learning model with little to no configuration needed! NoCode training with TensorFlow has never been so easy.
Python
951
star
2

BMW-YOLOv4-Training-Automation

This repository allows you to get started with training a state-of-the-art Deep Learning model with little to no configuration needed! You provide your labeled dataset or label your dataset using our BMW-LabelTool-Lite and you can start the training right away and monitor it in many different ways like TensorBoard or a custom REST API and GUI. NoCode training with YOLOv4 and YOLOV3 has never been so easy.
Python
633
star
3

BMW-TensorFlow-Inference-API-GPU

This is a repository for an object detection inference API using the Tensorflow framework.
Python
314
star
4

BMW-Labeltool-Lite

This repository provides you with an easy-to-use labeling tool for State-of-the-art Deep Learning training purposes. It supports Auto-Labeling.
C#
303
star
5

BMW-YOLOv4-Inference-API-GPU

This is a repository for an nocode object detection inference API using the Yolov3 and Yolov4 Darknet framework.
Python
281
star
6

BMW-YOLOv4-Inference-API-CPU

This is a repository for an nocode object detection inference API using the Yolov4 and Yolov3 Opencv.
Python
220
star
7

BMW-TensorFlow-Inference-API-CPU

This is a repository for an object detection inference API using the Tensorflow framework.
Python
186
star
8

BMW-Classification-Training-GUI

This repository allows you to get started with training a State-of-the-art Deep Learning model with little to no configuration needed! You provide your labeled dataset and you can start the training right away. You can even test your model with our built-in Inference REST API. Training classification models with GluonCV has never been so easy.
Python
74
star
9

BMW-IntelOpenVINO-Detection-Inference-API

This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.
Python
70
star
10

SORDI-AI-Evaluation-GUI

This repository allows you to evaluate a trained computer vision model and get general information and evaluation metrics with little configuration.
Python
69
star
11

SORDI-Data-Pipeline-Reader

SORDI dataset has per frame annotation file in json format. Following tools create a COCO style annotation out of it. Thus the SORDI data can be easily fed into COCO style training pipelines.
Jupyter Notebook
68
star
12

BMW-Semantic-Segmentation-Inference-API-GPU-CPU

This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit
Python
58
star
13

BMW-Classification-Inference-GPU-CPU

This is a repository for an image classification inference API using the Gluoncv framework. The inference REST API works on CPU/GPU. It's supported on Windows and Linux Operating systems. Models trained using our Gluoncv Classification training repository can be deployed in this API. Several models can be loaded and used at the same time.
Python
51
star
14

BMW-Optical-Objects-Recognition-API

This is a repository for an optical objects recognition API.
Python
44
star
15

BMW-HemiStereo-API

This is a repository for an object detection inference API using the Hemistereo NX 180 X camera. It allows you to label an object based on the training of a model from a server. Also, it allows you to calculate the distance of the object from the camera, as well as its dimensions: depth, width and height.
Python
40
star
16

BMW-IntelOpenVINO-Segmentation-Inference-API

This is a repository for a semantic segmentation inference API using the OpenVINO toolkit
Python
34
star
17

BMW-Semantic-Segmentation-Training-GUI

BMW Semantic Segmentation Training GUI. This Repository enables you to perform training using GluonCv toolkit with little to no configuration.
Python
28
star