HiAGM: Hierarchy-Aware Global Model for Hierarchical Text Classification
This repository implements the hierarchy-aware structure encoders for mutual interaction between label space and text features. This work has been accepted as the long paper 'Hierarchy-Aware Global Model for Hierarchical Text Classification' in ACL 2020. The dataset splits of NYTimes (New York Times) and WoS (Web of Science) are proposed in this repository.
Hierarchy-Aware Global Model
The hierarchy-aware global model improves the conventional text classification model with prior knowledge of the predefined hierarchical structure. The project folder consists of following parts:
- config: config files (json format)
- data: data dir, could be changed in config file (with sample data)
- data_modules: Dataset / DataLoader / Collator / Vocab
- helper: Configure / Hierarchy_Statistic / Logger / Utils
- models: StructureModel / EmbeddingLayer / TextEncoder / TextPropagation (HiAGM-TP) / Multi-Label Attention (HiAGM-LA)
- train_modules: Criterions / EvaluationMetrics / Trainer
Hierarchy-Aware Structure Encoder
- Bidirectional TreeLSTM: weighted_tree_lstm.py & tree.py
- Hierarchy-GCN: graphcnn.py
Setup
- Python >= 3.6
- torch >= 0.4.1
- numpy >= 1.17.4
Preprocess
data_modules.preprocess
- transform to json format file {'token': List[str], 'label': List[str]}
- clean stopwords
- RCV1-V2: The preprocess code could refer to the repository of reuters_loader.
- NYTimes & WoS: data.preprocess_nyt & data.preprocess_wos. Please download the origin datasets and then use these codes to preprocess for HTC.
Prior Probability
- helper.hierarchical_statistic
- Note that first change the Root.child List
- calculate the prior probability between parent-child pair in train dataset
Train
python train.py config/gcn-rcv1-v2.json
- optimizer -> train.set_optimizer: default torch.optim.Adam
- learning rate decay schedule callback -> train_modules.trainer.update_lr
- earlystop callback -> train.py
- Hyper-parameters are set in config.train
Citation
Please cite our ACL 2020 paper:
@article{jie2020hierarchy,
title={Hierarchy-Aware Global Model for Hierarchical Text Classification},
author={Jie Zhou, Chunping Ma, Dingkun Long, Guangwei Xu, Ning Ding, Haoyu Zhang, Pengjun Xie, Gongshen Liu},
booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL)},
year={2020}
}