• Stars
    star
    197
  • Rank 197,722 (Top 4 %)
  • Language
    Scala
  • License
    MIT License
  • Created over 7 years ago
  • Updated about 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Kafka consumer lag-checking application for monitoring, written in Scala and Akka HTTP; a wrap around the Kafka consumer group command. Integrations with Cloudwatch and Datadog. Authentication recently added

Remora

Grafana Graph

Remora is a monitoring utility for Apache Kafka that provides consumer lag checking as a service. An HTTP endpoint is provided to request consumer group information on demand. Combining this with a time series database like KairosDB it is possible to graph your consumer group status; see remora fetcher for an example of this.

Remora is stable and production ready. A number of production kafka clusters in Zalando are being monitored by Remora right now!

Inspiration

We created Remora after spending some time using Linkedin's burrow application for monitoring consumer lag and experiencing some performance problems (burrow shut down after an unknown amount with no error stack, alert or sign of error. We have no idea why but we had to keep restarting the app which was very annoying). Remora provides the Kafka consumer group command as an HTTP endpoint.

User Testimonials

We are using Kafka 0.10.2.1 extensively. As almost all our applications depend on Kafka, we needed a way to visualise consumer data over a time period in order to discover issues with our consumers. Remora lets us do exactly this, it exposes consumer group metrics over HTTP which allow us to create alarms if a consumer has stopped or slowed consumption from a topic or even on a single partition. ~ Team Buffalo @ Zalando Dublin

We are using Kafka 0.10.2.1 along with Akka Streams. We use Remora to track, alert, and visualise any lag within any of our components ~ Team Setanta @ Zalando Dublin

We rely on Kafka for streaming DB change events on to other teams within our organisation. Remora greatly aids us in ensuring our Kafka and Kafka Connect components are functioning correctly by monitoring both the number of events been produced, and any lag present on a per consumer basis. It is proving an excellent tool in providing data which we use to trigger real time alerts ~ Team Warhol @ Zalando Dublin

We use Kafka and Kafka Streaming to orchestrate the different components of our text processing pipeline. Through data provided by Remora, we monitor lags in different topics as part of our monitoring dashboard and alerting system. Remora makes it easier for us to quickly identify and respond to bottlenecks and problems. ~ Team Sapphire @ Zalando Dublin

We are using Mirror Maker to replicate data between two Kafka brokers and Remora has been a great help to monitor the replication in real time. The metrics exposed by Remora are pushed to Datadog, on top of which we build dashboards and triggers to help us react in case of failure. ~ Sqooba Switzerland

Getting started

Dependencies

The latest release of Remora supports Apache Kafka 3.1.0 and earlier.

To find the latest releases, please see the following examples:

$ curl https://registry.opensource.zalan.do/teams/buffalo/artifacts/remora/tags | jq ".[] | .name"

$ pierone latest buffalo remora --url registry.opensource.zalan.do # requires `$ pip3 install stups-pierone`

Running it

Images for all versions are available on Zalando opensource pierone

They can be used as follows:

docker run -it --rm -p 9000:9000 -e KAFKA_ENDPOINT=127.0.0.1:9092 registry.opensource.zalan.do/buffalo/remora

Run it with different log level:

docker run -it --rm -p 9000:9000 -e KAFKA_ENDPOINT=127.0.0.1:9092 -e 'JAVA_OPTS=-Dlogback-root-level=INFO' registry.opensource.zalan.do/buffalo/remora

For further examples see the docker-compose.yml

docker-compose -f basic-example/docker-compose.yml up

Run remora in IDE with kafka and zookeeper run by docker-compose. Note you must set -e KAFKA_ENDPOINT="kafka:9094" and --network basic-example_default for Remora to work with Kafka from docker-compose.

docker-compose -f basic-example/docker-compose.yml up --scale remora=0

Remora is stateless, so test the scale of the API

docker-compose -f basic-example/docker-compose.yml up --scale remora=3

For examples with broker authentication see the docker-compose.yml

docker-compose -f auth-example/docker-compose.yml up

Usage

Show active consumers

$ curl http://localhost:9000/consumers
["consumer-1", "consumer-2", "consumer-3"]

Show specific consumer group information

$ curl http://localhost:9000/consumers/<ConsumerGroupId>
{  
   "state":"Empty",
   "partition_assignment":[  
      {  
         "group":"console-consumer-20891",
         "coordinator":{  
            "id":0,
            "id_string":"0",
            "host":"foo.company.com",
            "port":9092
         },
         "topic":"products-in",
         "partition":1,
         "offset":3,
         "lag":0,
         "consumer_id":"-",
         "host":"-",
         "client_id":"-",
         "log_end_offset":3
      },
      {  
         "group":"console-consumer-20891",
         "coordinator":{  
            "id":0,
            "id_string":"0",
            "host":"foo.company.com",
            "port":9092
         },
         "topic":"products-in",
         "partition":0,
         "offset":3,
         "lag":0,
         "consumer_id":"consumer-1-7baba9b9-0ec3-4241-9433-f36255dd4708",
         "host":"/xx.xxx.xxx.xxx",
         "client_id":"consumer-1",
         "log_end_offset":3
      }
   ],
   "lag_per_topic":{
        "products-in" : 0
   }
}

Health

$ curl http://localhost:9000/health
{
    "cluster_id": "foobar_123",
    "controller": {
        "host": "xx.xxx.xxx.xxx",
        "id": 0,
        "id_string": "0",
        "port": 9092
    },
    "nodes": [
        {
            "host": "xx.xxx.xxx.xxx",
            "id": 0,
            "id_string": "0",
            "port": 9092
        }
    ]
}

Metrics

$ curl http://localhost:9000/metrics
{
  "version": "3.0.0",
  "gauges": {
    "PS-MarkSweep.count": {
      "value": 7371
    },
    "PS-MarkSweep.time": {
      "value": 310404
    },
    "PS-Scavenge.count": {
      "value": 476530
    },
    "PS-Scavenge.time": {
      "value": 1234370
    },
    "blocked.count": {
      "value": 0
    },
    "count": {
      "value": 12
    },
    "daemon.count": {
      "value": 3
    },
    "deadlock.count": {
      "value": 0
    },
    "deadlocks": {
      "value": []
    },
    "heap.committed": {
      "value": 74448896
    },
    "heap.init": {
      "value": 132120576
    },
    "heap.max": {
      "value": 1860698112
    },
    "heap.usage": {
      "value": 0.021295551247380425
    },
    "heap.used": {
      "value": 39624592
    },
    "new.count": {
      "value": 0
    },
    "non-heap.committed": {
      "value": 73883648
    },
    "non-heap.init": {
      "value": 2555904
    },
    "non-heap.max": {
      "value": -1
    },
    "non-heap.usage": {
      "value": -72377144
    },
    "non-heap.used": {
      "value": 72377144
    },
    "pools.Code-Cache.committed": {
      "value": 27525120
    },
    "pools.Code-Cache.init": {
      "value": 2555904
    },
    "pools.Code-Cache.max": {
      "value": 251658240
    },
    "pools.Code-Cache.usage": {
      "value": 0.10638478597005209
    },
    "pools.Code-Cache.used": {
      "value": 26772608
    },
    "pools.Compressed-Class-Space.committed": {
      "value": 5242880
    },
    "pools.Compressed-Class-Space.init": {
      "value": 0
    },
    "pools.Compressed-Class-Space.max": {
      "value": 1073741824
    },
    "pools.Compressed-Class-Space.usage": {
      "value": 0.004756048321723938
    },
    "pools.Compressed-Class-Space.used": {
      "value": 5106768
    },
    "pools.Metaspace.committed": {
      "value": 41115648
    },
    "pools.Metaspace.init": {
      "value": 0
    },
    "pools.Metaspace.max": {
      "value": -1
    },
    "pools.Metaspace.usage": {
      "value": 0.984972144911835
    },
    "pools.Metaspace.used": {
      "value": 40497768
    },
    "pools.PS-Eden-Space.committed": {
      "value": 40894464
    },
    "pools.PS-Eden-Space.init": {
      "value": 33554432
    },
    "pools.PS-Eden-Space.max": {
      "value": 693108736
    },
    "pools.PS-Eden-Space.usage": {
      "value": 0.02002515230164405
    },
    "pools.PS-Eden-Space.used": {
      "value": 13879608
    },
    "pools.PS-Old-Gen.committed": {
      "value": 31457280
    },
    "pools.PS-Old-Gen.init": {
      "value": 88080384
    },
    "pools.PS-Old-Gen.max": {
      "value": 1395654656
    },
    "pools.PS-Old-Gen.usage": {
      "value": 0.018360885975505965
    },
    "pools.PS-Old-Gen.used": {
      "value": 25625456
    },
    "pools.PS-Survivor-Space.committed": {
      "value": 2097152
    },
    "pools.PS-Survivor-Space.init": {
      "value": 5242880
    },
    "pools.PS-Survivor-Space.max": {
      "value": 2097152
    },
    "pools.PS-Survivor-Space.usage": {
      "value": 0.0625
    },
    "pools.PS-Survivor-Space.used": {
      "value": 131072
    },
    "runnable.count": {
      "value": 4
    },
    "terminated.count": {
      "value": 0
    },
    "timed_waiting.count": {
      "value": 1
    },
    "total.committed": {
      "value": 148332544
    },
    "total.init": {
      "value": 134676480
    },
    "total.max": {
      "value": 1860698111
    },
    "total.used": {
      "value": 112001672
    },
    "waiting.count": {
      "value": 7
    }
  },
  "counters": {
    "KafkaClientActor.receiveCounter": {
      "count": 1443078
    }, 
    "foo.3.bar.GET-rejections": {
      "count": 1
    },
    "foo.3bar.GET-rejections": {
      "count": 1
     },
     "foo.4.bar.GET-rejections": {
       "count": 1
     },
     "health.GET-2xx": {
       "count": 1
     },
     "metrics.GET-2xx": {
       "count": 5
     }   
  },
  "histograms": {},
  "meters": {
    "KafkaClientActor.receiveExceptionMeter": {
      "count": 0,
      "m15_rate": 0,
      "m1_rate": 0,
      "m5_rate": 0,
      "mean_rate": 0,
      "units": "events/second"
    }
  },
  "timers": {
    "KafkaClientActor.receiveTimer": {
      "count": 1443078,
      "max": 0.496106,
      "mean": 0.023955427605185976,
      "min": 0.00855,
      "p50": 0.013158,
      "p75": 0.015818,
      "p95": 0.069989,
      "p98": 0.18145599999999998,
      "p99": 0.193686,
      "p999": 0.47478499999999996,
      "stddev": 0.04561406607191679,
      "m15_rate": 0.8672873098267513,
      "m1_rate": 0.8576046718431439,
      "m5_rate": 0.8704903354041494,
      "mean_rate": 0.34074311090084636,
      "duration_units": "milliseconds",
      "rate_units": "calls/second"
    },
    "RemoraKafkaConsumerGroupService.describe-timer": {
      "count": 1372542,
      "max": 3953.5592429999997,
      "mean": 165.67620936478744,
      "min": 4.631377,
      "p50": 22.125121,
      "p75": 124.258938,
      "p95": 527.534084,
      "p98": 800.1686119999999,
      "p99": 3316.226616,
      "p999": 3611.7097409999997,
      "stddev": 473.995637636751,
      "m15_rate": 0.8508541627113339,
      "m1_rate": 0.8450436821406069,
      "m5_rate": 0.8545541048945428,
      "mean_rate": 0.324087977369598,
      "duration_units": "milliseconds",
      "rate_units": "calls/second"
    },
    "RemoraKafkaConsumerGroupService.list-timer": {
      "count": 70536,
      "max": 2167.1663869999998,
      "mean": 163.13534839326368,
      "min": 56.275192999999994,
      "p50": 162.584495,
      "p75": 162.584495,
      "p95": 162.584495,
      "p98": 200.345285,
      "p99": 200.345285,
      "p999": 437.69862,
      "stddev": 23.321317038931596,
      "m15_rate": 0.016617378383700615,
      "m1_rate": 0.015343754688965648,
      "m5_rate": 0.016501030706405084,
      "mean_rate": 0.016655133007592124,
      "duration_units": "milliseconds",
      "rate_units": "calls/second"
    },
    "metrics.GET": {
      "count": 2,
      "max": 174.712404,
      "mean": 88.26670169568574,
      "min": 4.375856,
      "p50": 4.375856,
      "p75": 174.712404,
      "p95": 174.712404,
      "p98": 174.712404,
      "p99": 174.712404,
      "p999": 174.712404,
      "stddev": 85.15869346735195,
      "m15_rate": 0,
      "m1_rate": 0,
      "m5_rate": 0,
      "mean_rate": 0.6714371986436051,
      "duration_units": "milliseconds",
      "rate_units": "calls/second"
      }
  }
}

Configuring Remora

Additional configuration can be passed via the following environment variables:

  • SERVER_PORT - default 9000
  • KAFKA_ENDPOINT - default localhost:9092
  • ACTOR_TIMEOUT - default 60 seconds
  • AKKA_HTTP_SERVER_REQUEST_TIMEOUT - default 60 seconds
  • AKKA_HTTP_SERVER_IDLE_TIMEOUT - default 60 seconds
  • TO_REGISTRY - default false reports lag/offset/end to metricsRegistry
  • EXPORT_METRICS_INTERVAL_SECONDS - default 20 interval to report lag/offset/end to metricsRegistry

Configuring Remora with Cloudwatch

The following environment variables can be used to configure reporting to Cloudwatch:

  • CLOUDWATCH_ON - default false reports metricsRegistry to cloudwatch, TO_REGISTRY will need to be switched on!
  • CLOUDWATCH_NAME - default 'remora' name to appear on cloudwatch
  • CLOUDWATCH_METRIC_FILTER - default '' metric names to filter on cloudwatch. Set the CLOUDWATCH_METRIC_FILTER variable to a regex string to filter out metric names that DO NOT match the regex.

Configuring Remora with Datadog

The following environment variables can be used to configure reporting to Datadog:

  • DATADOG_ON - default false reports metricsRegistry to Datadog, TO_REGISTRY will need to be switched on!
  • DATADOG_NAME - default 'remora' name to appear on datadog
  • DATADOG_INTERVAL_MINUTES - default '1' The reporting interval, in minutes.
  • DATADOG_AGENT_HOST - default 'localhost' The host on which a Datadog agent is running.
  • DATADOG_AGENT_PORT - default '8125' The port of the Datadog agent.
  • DATADOG_CONSUMER_GROUPS - default '[]' List of consumer groups for which metrics will be sent to Datadog. An empty list means that all metrics will be sent.

Reporting to datadog agent:

Reporting to Datadog is done via DogStatsD, which is usually running on the same host as remora. However, as Remora is running inside a docker container, some steps are required to make the integration:

  • Set DATADOG_AGENT_HOST as the address of the host on your machine
  • In the datadog agent configuration, set non_local_traffic: yes

This way, a docker container running Remora will be able to communicate with a Datadog agent on the host machine.

Building from source

Prerequisites

  • Scala
  • SBT

Build

Create docker image locally. The image will be built to remora:0.1.0-SNAPSHOT by default.

$ sbt docker:publishLocal

Contributing

We are happy to accept contributions. First, take a look at our contributing guidelines.

TODO

Please check the Issues Page for contribution ideas.

Contact

Feel free to contact one of the maintainers.

License

MIT

More Repositories

1

graphql-jit

GraphQL execution using a JIT compiler
TypeScript
1,048
star
2

kopf

A Python framework to write Kubernetes operators in just few lines of code.
Python
969
star
3

kubernetes-on-aws

Deploying Kubernetes on AWS with CloudFormation and Ubuntu
Go
624
star
4

kube-metrics-adapter

General purpose metrics adapter for Kubernetes HPA metrics
Go
521
star
5

kube-ingress-aws-controller

Configures AWS Load Balancers according to Kubernetes Ingress resources
Go
375
star
6

es-operator

Kubernetes Operator for Elasticsearch
Go
352
star
7

hexo-theme-doc

A documentation theme for the Hexo blog framework
JavaScript
247
star
8

cluster-lifecycle-manager

Cluster Lifecycle Manager (CLM) to provision and update multiple Kubernetes clusters
Go
230
star
9

docker-locust

Docker image for the Locust.io open source load testing tool
Python
205
star
10

stackset-controller

Opinionated StackSet resource for managing application life cycle and traffic switching in Kubernetes
Go
171
star
11

kube-aws-iam-controller

Distribute different AWS IAM credentials to different pods in Kubernetes via secrets.
Go
157
star
12

tessellate

Server-side React render service.
JavaScript
151
star
13

transformer

A tool to transform/convert web browser sessions (HAR files) into Locust load testing scenarios (locustfile).
Python
99
star
14

bro-q

Chrome Extension for JSON formatting and jq filtering in your browser.
TypeScript
83
star
15

spark-json-schema

JSON schema parser for Apache Spark
Scala
81
star
16

catwatch

A metrics dashboard for GitHub organizations, with results accessible via REST API
Java
59
star
17

authmosphere

A library to support OAuth2 workflows in JavaScript projects
TypeScript
54
star
18

banknote

A simple JavaScript libary for formatting currency amounts according to Unicode CLDR standards
JavaScript
46
star
19

flatjson

A fast JSON parser (and builder)
Java
45
star
20

perron

A sane node.js client for web services
JavaScript
44
star
21

zelt

A command-line tool for orchestrating the deployment of Locust in Kubernetes.
Python
36
star
22

hexo-theme-doc-seed

skeleton structure for a documentation website using Hexo and the hexo-doc-theme
29
star
23

kubernetes-log-watcher

Kubernetes log watcher for Scalyr and AppDynamics
Python
27
star
24

new-project

Template to use when creating a new open source project. It comes with all the standard files which there is expected to be in an open source project on Github.
24
star
25

darty

Data dependency manager
Python
22
star
26

chisel

⚒️ collection of awesome practices for putting things on pedestal
Clojure
20
star
27

fabric-gateway

An API Gateway built on the Skipper Ingress Controller https://github.com/zalando/skipper
Scala
17
star
28

roadblock

A node.js application for pulling github organisation statistics into a database.
JavaScript
16
star
29

ember-dressy-table

An ember addon for dynamic tables
JavaScript
10
star
30

zalando.github.io-dev

The zalando.github.io open-source metrics dashboard
JavaScript
10
star
31

atlas-js-core

JavaScript SDK Core for Zalando Checkout, Guest Checkout, and Catalog APIs
JavaScript
9
star
32

opentracing-sqs-java

An attempt at a simple SQS helper library for OpenTracing support.
Java
8
star
33

clin

Cli for Nakadi for event types and subscriptions management
Python
7
star
34

play-etcd-watcher

Instantaneous etcd directory listener for Scala Play
Scala
6
star
35

Zincr

Zincr is a Github bot built with Probot to enforce approvals, specification and licensing checks
TypeScript
5
star
36

jzon

Apis for working with json
Java
5
star
37

Trafficlight

Node.js CLI for creating and migrating Github projects, ensuring that it follows a consistent model for permissions, teams and boilerplate files.
JavaScript
1
star