• Stars
    star
    176
  • Rank 216,987 (Top 5 %)
  • Language
    Python
  • License
    MIT License
  • Created over 6 years ago
  • Updated almost 6 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Code for TianChi 2018 FashionAI Cloth KeyPoint Detection Challenge

AiFashion

  • Author: VictorLi, [email protected]
  • Code for FashionAI Global Challengeโ€”Key Points Detection of Apparel 2018 TianChi
  • Rank 45/2322 at 1st round competition, score 0.61
  • Rank 46 at 2nd round competition, score 0.477

Images with detected keypoints

Dress

Dress

Blouse

Blouse

Outwear

Outwear

Skirt

Skirt

Trousers

Trousers

Basic idea

  • The key idea comes from paper Cascaded Pyramid Network for Multi-Person Pose Estimation. We have a 2 stage network called global net and refine net who are U-net like. The network was trained to detect the heatmap of cloth's key points. The backbone network used here is resnet101.
  • To overcome the negative impact from different category, input_mask was introduced to zero the invalid keypoints. For example, skirt has 4 valid keypoints: waistband_left, waistband_right, hemline_left and hemline_right. In input_mask, only those valid masks are 1.0 , while other 20 masks are set as zero.
  • On line hard negative mining, at last stage of refinenet, only take the top losses as consideration and ignore the easy part (small loss)

Dependency

  • Keras2.0
  • Tensorflow
  • Opencv/Numpy/Pandas
  • Pretrained model weights, resenet101

Folder Structure

  • data: folder to store training and testing images and annotations
  • trained_models: folder to store trained models and logs
  • submission: folder to store generated submission for evaluation.
  • src: folder to put all of source code.
    src/data_gen: code for data generator including data augmentation and pre-process
    src/eval: code for evaluation, including inference and post-processing.
    src/unet: code for cnn model definition, including train, fine-tune, loss, optimizer definition.
    src/top:top level code for train, test and demo.

How to train network

  • Download dataset from competition webpage and put it under data.
    data/train : data used as train. data/test : data used for test
  • Download resnet101 model and save it as data/resnet101_weights_tf.h5.
    Note: all the models here use channel_last dim order.
  • Train all-in-one network from scratch
python train.py --category all --epochs 30 --network v11 --batchSize 3 --gpuID 2
  • The trained model and log will be put under trained_models/all/xxxx, i.e trained_models/all/2018_05_23_15_18_07/
  • The evaluation will run for each epoch and details saved to val.log
  • Resume training from a specific model.
python train.py --gpuID 2 --category all --epochs 30 --network v11 --batchSize 3 --resume True --resumeModel /path/to/model/start/with --initEpoch 6

How to test and generate submission

  • Run test and generate submission Below command search the best score from modelpath and use that to generate submission
python test.py --gpuID 2 --modelpath ../../trained_models/all/xxx --outpath ../../submission/2018_04_19/ --augment True

The submission will be saved as submission.csv

How to run demo

  • Download the pre trained weights from BaiduDisk (password 1ae2) or GoogleDrive
  • Save it somewhere, i.e trained_models/all/fashion_ai_keypoint_weights_epoch28.hdf5
  • Or use your own trained model.
  • Run demo and the cloth with keypoints marked will be displayed.
python demo.py --gpuID 2 --modelfile ../../trained_models/all/fashion_ai_keypoint_weights_epoch28.hdf5

Reference