• Stars
    star
    575
  • Rank 77,622 (Top 2 %)
  • Language
    Python
  • License
    MIT License
  • Created almost 7 years ago
  • Updated almost 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Python script for illustrating Convolutional Neural Networks (CNN) using Keras-like model definitions

ConvNet Drawer

Python script for illustrating Convolutional Neural Networks (CNN). Inspired by the draw_convnet project [1].

Models can be visualized via Keras-like (Sequential) model definitions. The result can be saved as SVG file or pptx file!

Requirements

python-pptx (if you want to save models as pptx)

pip install python-pptx

Keras (if you want to convert Keras sequential model)

pip install keras

matplotlib (if you want to save models via matplotlib)

pip install matplotlib

Usage

Write a script to define and save a model. An example of visualizing AlexNet [2] is as follows.

Write and save convnet_drawer.Model

from convnet_drawer import Model, Conv2D, MaxPooling2D, Flatten, Dense
from pptx_util import save_model_to_pptx
from matplotlib_util import save_model_to_file

model = Model(input_shape=(227, 227, 3))
model.add(Conv2D(96, (11, 11), (4, 4)))
model.add(MaxPooling2D((3, 3), strides=(2, 2)))
model.add(Conv2D(256, (5, 5), padding="same"))
model.add(MaxPooling2D((3, 3), strides=(2, 2)))
model.add(Conv2D(384, (3, 3), padding="same"))
model.add(Conv2D(384, (3, 3), padding="same"))
model.add(Conv2D(256, (3, 3), padding="same"))
model.add(MaxPooling2D((3, 3), strides=(2, 2)))
model.add(Flatten())
model.add(Dense(4096))
model.add(Dense(4096))
model.add(Dense(1000))

# save as svg file
model.save_fig("example.svg")

# save as pptx file
save_model_to_pptx(model, "example.pptx")

# save via matplotlib
save_model_to_file(model, "example.pdf")

Result:

The other examples can be found here.

Convert Keras sequential model

Keras sequential model can be converted to convnet_drawer.Model (thanks to @wakamezake). Only Conv2D, MaxPooling2D, GlobalAveragePooling2D, Flatten, Dense layers are supported for this conversion.

from keras_util import convert_drawer_model
from keras_models import AlexNet
from pptx_util import save_model_to_pptx
from matplotlib_util import save_model_to_file

# get Keras sequential model
keras_sequential_model = AlexNet.get_model()
model = convert_drawer_model(keras_sequential_model)

# save as svg file
model.save_fig("example.svg")

# save as pptx file
save_model_to_pptx(model, "example.pptx")

# save via matplotlib
save_model_to_file(model, "example.pdf")

Supported Layers

  • Conv2D
    • Conv2D(filters=None, kernel_size=None, strides=(1, 1), padding="valid")
    • e.g. Conv2D(96, (11, 11), (4, 4)))
  • Deconv2D
    • Deconv2D(filters=None, kernel_size=None, strides=(1, 1), padding="valid")
    • e.g. Deconv2D(256, (3, 3), (2, 2)))
  • MaxPooling2D, AveragePooling2D
    • MaxPooling2D(pool_size=(2, 2), strides=None, padding="valid")
    • e.g. MaxPooling2D((3, 3), strides=(2, 2))
    • If strides = None, stride is set to be pool_size.
  • GlobalAveragePooling2D
    • GlobalAveragePooling2D()
  • Flatten
    • Flatten()
  • Dense
    • Dense(units)
    • e.g. Dense(4096)

Visualization Parameters

Visualization Parameters can be found in config.py. Please adjust these parameters before model definition (see LeNet.py). The most important parameter is channel_scale = 3 / 5. This parameter rescale actual channel size c to c_ for visualization as:

c_ = math.pow(c, channel_scale)

If the maximum channel size is small (e.g. 512), please increase channel_scale.

Check how the other parameters works:

Default Values

theta = - math.pi / 6
ratio = 0.7
bounding_box_margin = 10
inter_layer_margin = 50
text_margin = 10
channel_scale = 3 / 5
text_size = 14
one_dim_width = 4
line_color_feature_map = (0, 0, 0)
line_color_layer = (0, 0, 255)
text_color_feature_map = (0, 0, 0)
text_color_layer = (0, 0, 0)

TODOs

  • Implement padding option for Conv2D and Pooling layers.
  • Add some effects to Dense layer (and Flatten / GlobalAveragePooling2D).
  • Automatically calibrate the scale of feature maps for better visibility.
  • Move hard-coded parameters to a config file or options.
  • Refactor Layer classes.
  • Draw with matplotlib? for other formats. The model is now directly saved as a pptx file.

Results

LeNet

AlexNet

ZFNet

VGG16

AutoEncoder

AlexNet saved by matplotlib with plt.xkcd()

References

[1] https://github.com/gwding/draw_convnet

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks," in Proc. of NIPS, 2012.