CenterMask2
[CenterMask(original code)
][vovnet-detectron2
][arxiv
] [BibTeX
]
CenterMask2 is an upgraded implementation on top of detectron2 beyond original CenterMask based on maskrcnn-benchmark.
CenterMask : Real-Time Anchor-Free Instance Segmentation (CVPR 2020)
Youngwan Lee and Jongyoul Park
Electronics and Telecommunications Research Institute (ETRI)
pre-print : https://arxiv.org/abs/1911.06667
Highlights
- First anchor-free one-stage instance segmentation. To the best of our knowledge, CenterMask is the first instance segmentation on top of anchor-free object detection (15/11/2019).
- Toward Real-Time: CenterMask-Lite. This works provide not only large-scale CenterMask but also lightweight CenterMask-Lite that can run at real-time speed (> 30 fps).
- State-of-the-art performance. CenterMask outperforms Mask R-CNN, TensorMask, and ShapeMask at much faster speed and CenterMask-Lite models also surpass YOLACT or YOLACT++ by large margins.
- Well balanced (speed/accuracy) backbone network, VoVNetV2. VoVNetV2 shows better performance and faster speed than ResNe(X)t or HRNet.
Updates
- CenterMask2 has been released. (20/02/2020)
- Lightweight VoVNet has ben released. (26/02/2020)
- Panoptic-CenterMask has been released. (31/03/2020)
- code update for compatibility with pytorch1.7 and the latest detectron2 (22/12/2020)
Results on COCO val
Note
We measure the inference time of all models with batch size 1 on the same V100 GPU machine.
- pytorch1.7.0
- CUDA 10.1
- cuDNN 7.3
- multi-scale augmentation
- Unless speficified, no Test-Time Augmentation (TTA)
CenterMask
Method | Backbone | lr sched | inference time | mask AP | box AP | download |
---|---|---|---|---|---|---|
Mask R-CNN (detectron2) | R-50 | 3x | 0.055 | 37.2 | 41.0 | model | metrics |
Mask R-CNN (detectron2) | V2-39 | 3x | 0.052 | 39.3 | 43.8 | model | metrics |
CenterMask (maskrcnn-benchmark) | V2-39 | 3x | 0.070 | 38.5 | 43.5 | link |
CenterMask2 | V2-39 | 3x | 0.050 | 39.7 | 44.2 | model | metrics |
Mask R-CNN (detectron2) | R-101 | 3x | 0.070 | 38.6 | 42.9 | model | metrics |
Mask R-CNN (detectron2) | V2-57 | 3x | 0.058 | 39.7 | 44.2 | model | metrics |
CenterMask (maskrcnn-benchmark) | V2-57 | 3x | 0.076 | 39.4 | 44.6 | link |
CenterMask2 | V2-57 | 3x | 0.058 | 40.5 | 45.1 | model | metrics |
Mask R-CNN (detectron2) | X-101 | 3x | 0.129 | 39.5 | 44.3 | model | metrics |
Mask R-CNN (detectron2) | V2-99 | 3x | 0.076 | 40.3 | 44.9 | model | metrics |
CenterMask (maskrcnn-benchmark) | V2-99 | 3x | 0.106 | 40.2 | 45.6 | link |
CenterMask2 | V2-99 | 3x | 0.077 | 41.4 | 46.0 | model | metrics |
CenterMask2 (TTA) | V2-99 | 3x | - | 42.5 | 48.6 | model | metrics |
- TTA denotes Test-Time Augmentation (multi-scale test).
CenterMask-Lite
Method | Backbone | lr sched | inference time | mask AP | box AP | download |
---|---|---|---|---|---|---|
YOLACT550 | R-50 | 4x | 0.023 | 28.2 | 30.3 | link |
CenterMask (maskrcnn-benchmark) | V-19 | 4x | 0.023 | 32.4 | 35.9 | link |
CenterMask2-Lite | V-19 | 4x | 0.023 | 32.8 | 35.9 | model | metrics |
YOLACT550 | R-101 | 4x | 0.030 | 28.2 | 30.3 | link |
YOLACT550++ | R-50 | 4x | 0.029 | 34.1 | - | link |
YOLACT550++ | R-101 | 4x | 0.036 | 34.6 | - | link |
CenterMask (maskrcnn-benchmark) | V-39 | 4x | 0.027 | 36.3 | 40.7 | link |
CenterMask2-Lite | V-39 | 4x | 0.028 | 36.7 | 40.9 | model | metrics |
- Note that The inference time is measured on Titan Xp GPU for fair comparison with YOLACT.
Lightweight VoVNet backbone
Method | Backbone | Param. | lr sched | inference time | mask AP | box AP | download |
---|---|---|---|---|---|---|---|
CenterMask2-Lite | MobileNetV2 | 3.5M | 4x | 0.021 | 27.2 | 29.8 | model | metrics |
CenterMask2-Lite | V-19 | 11.2M | 4x | 0.023 | 32.8 | 35.9 | model | metrics |
CenterMask2-Lite | V-19-Slim | 3.1M | 4x | 0.021 | 29.8 | 32.5 | model | metrics |
CenterMask2-Lite | V-19Slim-DW | 1.8M | 4x | 0.020 | 27.1 | 29.5 | model | metrics |
- DW and Slim denote depthwise separable convolution and a thiner model with half the channel size, respectively.
- Params. means the number of parameters of backbone.
Deformable VoVNet Backbone
Method | Backbone | lr sched | inference time | mask AP | box AP | download |
---|---|---|---|---|---|---|
CenterMask2 | V2-39 | 3x | 0.050 | 39.7 | 44.2 | model | metrics |
CenterMask2 | V2-39-DCN | 3x | 0.061 | 40.3 | 45.1 | model | metrics |
CenterMask2 | V2-57 | 3x | 0.058 | 40.5 | 45.1 | model | metrics |
CenterMask2 | V2-57-DCN | 3x | 0.071 | 40.9 | 45.5 | model | metrics |
CenterMask2 | V2-99 | 3x | 0.077 | 41.4 | 46.0 | model | metrics |
CenterMask2 | V2-99-DCN | 3x | 0.110 | 42.0 | 46.9 | model | metrics |
- DCN denotes deformable convolutional networks v2. Note that we apply deformable convolutions from stage 3 to 5 in backbones.
Panoptic-CenterMask
Method | Backbone | lr sched | inference time | mask AP | box AP | PQ | download |
---|---|---|---|---|---|---|---|
Panoptic-FPN | R-50 | 3x | 0.063 | 40.0 | 36.5 | 41.5 | model | metrics |
Panoptic-CenterMask | R-50 | 3x | 0.063 | 41.4 | 37.3 | 42.0 | model | metrics |
Panoptic-FPN | V-39 | 3x | 0.063 | 42.8 | 38.5 | 43.4 | model | metrics |
Panoptic-CenterMask | V-39 | 3x | 0.066 | 43.4 | 39.0 | 43.7 | model | metrics |
Panoptic-FPN | R-101 | 3x | 0.078 | 42.4 | 38.5 | 43.0 | model | metrics |
Panoptic-CenterMask | R-101 | 3x | 0.076 | 43.5 | 39.0 | 43.6 | model | metrics |
Panoptic-FPN | V-57 | 3x | 0.070 | 43.4 | 39.2 | 44.3 | model | metrics |
Panoptic-CenterMask | V-57 | 3x | 0.071 | 43.9 | 39.6 | 44.5 | model | metrics |
Panoptic-CenterMask | V-99 | 3x | 0.091 | 45.1 | 40.6 | 45.4 | model | metrics |
Installation
All you need to use centermask2 is detectron2. It's easy!
you just install detectron2 following INSTALL.md.
Prepare for coco dataset following this instruction.
Training
ImageNet Pretrained Models
We provide backbone weights pretrained on ImageNet-1k dataset for detectron2.
To train a model, run
cd centermask2
python train_net.py --config-file "configs/<config.yaml>"
For example, to launch CenterMask training with VoVNetV2-39 backbone on 8 GPUs, one should execute:
cd centermask2
python train_net.py --config-file "configs/centermask/centermask_V_39_eSE_FPN_ms_3x.yaml" --num-gpus 8
Evaluation
Model evaluation can be done similarly:
- if you want to inference with 1 batch
--num-gpus 1
--eval-only
MODEL.WEIGHTS path/to/the/model.pth
cd centermask2
wget https://dl.dropbox.com/s/tczecsdxt10uai5/centermask2-V-39-eSE-FPN-ms-3x.pth
python train_net.py --config-file "configs/centermask/centermask_V_39_eSE_FPN_ms_3x.yaml" --num-gpus 1 --eval-only MODEL.WEIGHTS centermask2-V-39-eSE-FPN-ms-3x.pth
TODO
- Adding Lightweight models
- Applying CenterMask for PointRend or Panoptic-FPN.
Citing CenterMask
If you use VoVNet, please use the following BibTeX entry.
@inproceedings{lee2019energy,
title = {An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object Detection},
author = {Lee, Youngwan and Hwang, Joong-won and Lee, Sangrok and Bae, Yuseok and Park, Jongyoul},
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops},
year = {2019}
}
@inproceedings{lee2020centermask,
title={CenterMask: Real-Time Anchor-Free Instance Segmentation},
author={Lee, Youngwan and Park, Jongyoul},
booktitle={CVPR},
year={2020}
}
Special Thanks to
mask scoring for detectron2 by Sangrok Lee
FCOS_for_detectron2 by AdeliDet team.