• Stars
    star
    414
  • Rank 104,550 (Top 3 %)
  • Language
    Python
  • License
    GNU General Publi...
  • Created about 8 years ago
  • Updated over 5 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Keras implementation of deepmind's wavenet paper

keras-wavenet

Keras implementation of deepmind's wavenet paper

Link to paper

Dataset used

I have used Librispeech corpus. I have concatenated all audio files in dev-clean to create train.wav and all files in test-clean to create validate.wav. I have resampled the audio files to 8000 Hz. Here is how you can create train.wav & validate.wav using vlc on linux:

cvlc -vvv --sout-keep --sout-all --sout "#gather:transcode{acodec=s16l,channels=1,samplerate=8000}:std{access=file,mux=wav,dst=validate.wav}" `find LibriSpeech/test-clean/ -name "*.flac"` vlc://quit
cvlc -vvv --sout-keep --sout-all --sout "#gather:transcode{acodec=s16l,channels=1,samplerate=8000}:std{access=file,mux=wav,dst=train.wav}" `find LibriSpeech/dev-clean/ -name "*.flac"` vlc://quit

Todo

  • The basic generative model
  • Conditioning logic (speaker)
  • Conditioning logic (TTS)