PolyTracker
PolyTracker is a tool originally created for the Automated Lexical Annotation and Navigation of Parsers, a backronym devised solely for the purpose of referring to it as The ALAN Parsers Project. However, it has evolved into a general purpose tool for efficiently performing data-flow and control-flow analysis of programs. PolyTracker is an LLVM pass that instruments programs to track which bytes of an input file are operated on by which functions. It outputs a database containing the data-flow information, as well as a runtime trace. PolyTracker also provides a Python library for interacting with and analyzing its output, as well as an interactive Python REPL.
PolyTracker can be used in conjunction with PolyFile to automatically determine the semantic purpose of the functions in a parser. It also has an experimental feature capable of generating a context free grammar representing the language accepted by a parser.
Unlike dynamic instrumentation alternatives like Taintgrind, PolyTracker imposes negligible performance overhead for almost all inputs, and is capable of tracking every byte of input at once. PolyTracker started as a fork of the LLVM DataFlowSanitizer and takes much inspiration from the Angora Fuzzer. However, unlike the Angora system, PolyTracker is able to track the entire provenance of a taint. In February of 2021, the LLVM DataFlowSanitizer added a new feature for tracking taint provenance called origin tracking. However, it is only able to track at most 16 taints at once, while PolyTracker can track up to 231-1.
This README serves as the general usage guide for installing PolyTracker and compiling/instrumenting binaries. For programmatically interacting with or extending PolyTracker through its Python API, as well as for interacting with runtime traces produced from instrumented code, consult the Python documentation.
Quickstart
PolyTracker is controlled via a Python script called polytracker
. You can
install it by running
pip3 install polytracker
PolyTracker requires a very particular system environment to run, so almost all
users are likely to run it in a containerized environment. Luckily,
polytracker
makes this easy. All you need to do is have docker
installed,
then run:
polytracker docker pull
and
polytracker docker run
The latter command will mount the current working directory into the PolyTracker Docker container, and allow you to build and run instrumented programs.
The polytracker
control script—which you can run from either your host system
or from inside the Docker container—has a variety of commands, both for
instrumenting programs as well as analyzing the resulting artifacts. For
example, you can explore the dataflows in the execution, reconstruct the
instrumented program's control flow graph, and even extract a context free
grammar matching the inputs accepted by the program. You can explore these
commands by running
polytracker --help
The polytracker
script is also a REPL, if run with no command line arguments:
$ polytracker
PolyTracker (4.0.0)
https://github.com/trailofbits/polytracker
Type "help" or "commands"
>>> commands
Instrumenting a simple C/C++ program
PolyTracker also comes with a build
command. This command allows the user to
run any build command in a Blight
instrumented environment. This will produce a blight_journal.jsonl
file that
records all commands run during the build. If you have a C/C++ target, you can
instrument it by invoking polytracker build
and passing your build command:
polytracker build gcc -g -o my_binary my_source.c
To instrument a build target, use the instrument-targets
command. By default
the command will use the a blight_journal.jsonl
in your current working
directory to build an instrumented version of your build target. The
instrumented build target will be built using the same flags as the original
build target.
polytracker instrument-targets my_binary
build
also supports more complex programs that use a build system like
autotiools or CMake:
polytracker build cmake .. -DCMAKE_BUILD_TYPE=Release
polytracker build ninja
# or
polytracker build ./configure
polytracker build make
Then run instrument-targets
on any targets of the build:
$ polytracker instrument-targets a.bin b.so
Then a.instrumented.bin
and b.instrumented.so
will be the instrumented
versions. See the Dockerfiles in the
examples
directory for examples of how real-world programs can be instrumented.
Running and Analyzing an Instrumented Program
The instrumented software will write its output to the path specified in
POLYDB
, or polytracker.tdag
if omitted. This is a binary file that can be
operated on by running:
from polytracker import PolyTrackerTrace, taint_dag
trace = PolyTrackerTrace.load("polytracker.tdag")
tdfile = trace.tdfile
first_node = list(tdfile.nodes)[0]
print(f"First node affects control flow: {first_node.affects_control_flow}")
# Operate on all Range nodes
for index, node in enumerate(tdfile.nodes):
if isinstance(node, taint_dag.TDRangeNode):
print(f"Node {index}: first {node.first}, last {node.last}")
# Access taint forest
tdforest = trace.taint_forest
n1 = tdforest.get_node(1)
print(
f"Forest node {n1.label}. Parent labels: {n1.parent_labels}, "
f"source: {n1.source.path if n1.source is not None else None}, "
f"affects control flow: {n1.affected_control_flow}"
)
You can also run an instrumented binary directly from the REPL:
$ polytracker
PolyTracker (4.0.0)
https://github.com/trailofbits/polytracker
Type "help" or "commands"
>>> trace = run_trace("path_to_binary", "path_to_input_file")
This will automatically run the instrumented binary in a Docker container, if necessary.
⚠️ If running PolyTracker inside Docker or a VM: PolyTracker can be very slow if running in a virtualized environment and either the input file or, especially, the output database are located in a directory mapped or mounted from the host OS. This is particularly true when running PolyTracker in Docker from a macOS host. The solution is to write the database to a path inside of the container/VM and then copy it out to the host system at the very end.
The Python API documentation is available here.
Runtime Parameters and Instrumentation Tuning
At runtime, PolyTracker instrumentation looks for a number of configuration parameters specified through environment variables. This allows one to modify instrumentation parameters without needing to recompile the binary.
Environment Variables
PolyTracker accepts configuration parameters in the form of environment variables to avoid recompiling target programs. The current environment variables PolyTracker supports is:
POLYDB: A path to which to save the output database (default is polytracker.tdag)
WLLVM_ARTIFACT_STORE: Provides a path to an existing directory to store artifact/manifest for all build targets
POLYTRACKER_TAINT_ARGV: Set to '1' to use argv as a taint source.
Polytracker will set its configuration parameters in the following order:
- If a parameter is specified via an environment variable, use that value
- Else if a default value for the parameter exists, use the default
- Else throw an error
ABI Lists
DFSan uses ABI lists to determine what functions it should automatically instrument, what functions it should ignore, and what custom function wrappers exist. See the dfsan documentation for more information.
Creating custom ignore lists from pre-built libraries
Attempting to build large software projects can be time consuming, especially older/unsupported ones. It's even more time consuming to try and modify the build system such that it supports changes, like dfsan's/our instrumentation.
There is a script located in polytracker/scripts
that you can run on any ELF
library and it will output a list of functions to ignore. We use this when we do
not want to track information going through a specific library like libpng, or
other sub components of a program. The Dockerfile-listgen.demo
exists to build
common open source libraries so we can create these lists.
This script is a slightly tweaked version of what DataFlowSanitizer has, which
focuses on ignoring system libraries. The original script can be found in
dfsan_rt
.
Building the Examples
Check out this Git repository. From the root, either build the base PolyTracker Docker image:
pip3 install -e ".[dev]" && polytracker docker rebuild
or pull the latest prebuilt version from DockerHub:
docker pull trailofbits/polytracker:latest
For a demo of PolyTracker running on the MuPDF parser run this command:
docker build -t trailofbits/polytracker-demo-mupdf -f examples/pdf/Dockerfile-mupdf.demo .
mutool_track
will be build in /polytracker/the_klondike/mupdf/build/debug
.
Running mutool_track
will output polytracker.tdag
which contains the
information provided by the taint analysis.
For a demo of PolyTracker running on Poppler utils version 0.84.0 run this command:
docker build -t trailofbits/polytracker-demo-poppler -f examples/pdf/Dockerfile-poppler.demo .
All the poppler utils will be located in
/polytracker/the_klondike/poppler-0.84.0/build/utils
.
$ cd /polytracker/the_klondike/poppler-0.84.0/build/utils
$ ./pdfinfo_track some_pdf.pdf
Building PolyTracker from Source
The compilation process for both PolyTracker LLVM and PolyTracker is rather
fickle, since it involves juggling both instrumented and non-instrumented
versions of standard library bitcode. We highly recommend using our pre-built
and tested Docker container if at all possible. Installing the PolyTracker
Python package on your host system will allow you to seamlessly interact with
the prebuilt Docker container. Otherwise, to install PolyTracker natively, we
recommend first replicating the install process from the
polytracker-llvm
Dockerfile,
followed by replicating the install process from the
PolyTracker Dockerfile.
Build Dependencies
- PolyTracker LLVM.
PolyTracker is built atop its own fork of LLVM,
polytracker-llvm
. This fork modifies the DataFlow Sanitizer to use increased label sizes (to allow for tracking orders of magnitude more taints), as well as alternative data structures to store them. We have investigated up-streaming our changes into LLVM proper, but there has been little interest. - CMake
- Ninja (
ninja-build
on Ubuntu)
Runtime Dependencies
The following tools are required to test and run PolyTracker:
- Python 3.7+ and
pip
(apt-get -y install python3.7 python3-pip
). These are used for both seamlessly interacting with the Docker container (if necessary), as well as post-processing and analyzing the artifacts produced from runtime traces. - gllvm
(
go get github.com/SRI-CSL/gllvm/cmd/...
) is used to create whole program bitcode archives and to extract bitcode from targets.
Building on Apple silicon:
Prebuilt Docker images for polytracker-llvm
are only available for amd64
.
Users with arm64
systems will have to build the image locally and then change
polytracker
's Dockerfile to point to it:
$ mkdir repos && cd repos
$ git clone https://github.com/trailofbits/polytracker
$ git clone https://github.com/trailofbits/polytracker-llvm
$ cd polytracker-llvm
$ DOCKER_BUILDKIT=1 docker build -t trailofbits/polytracker-llvm .
$ cd ../polytracker
$ ## Replace the first line of the Dockerfile with "FROM trailofbits/polytracker-llvm:latest" (no quotes)
$ docker build -t trailofbits/polytracker .
Current Status and Known Issues
PolyTracker currently only runs on Linux, because that is the only system supported by the DataFlow Santizer. This limitation is just due to a lack of support for semantics for other OSes system calls, which could be added in the future. However, this means that running PolyTracker on a non-Linux system will require Docker to be installed.
Taints will not propagate through dynamically loaded libraries unless those libraries were compiled from source using PolyTracker, or there is specific support for the library calls implemented in PolyTracker. There is currently support for propagating taint through the majority of uninstrumented C standard library calls. To be clear, programs that use uninstrumented functions will still run normally, however, operations performed by unsupported library calls will not propagate taint. We are currently working on adding robust support for C++ programs, but currently the best results will be from C programs.
If there are issues with Docker, try performing a system prune and build with
--no-cache
for both PolyTracker and whatever demo you are trying to run.
The worst case performance of PolyTracker is exercised when a single byte in memory is simultaneously tainted by a large number of input bytes from the source file. This is most common when instrumenting compression and cryptographic algorithms that have large block sizes. There are a number of mitigations for this behavior currently being researched and developed.
License and Acknowledgements
This research was developed by Trail of Bits with funding from the Defense Advanced Research Projects Agency (DARPA) under the SafeDocs program as a subcontractor to Galois. It is licensed under the Apache 2.0 license. © 2019, Trail of Bits.
Maintainers
Evan Sultanik
Henrik Brodin
Marek Surovič
Facundo Tuesca
[email protected]