• Stars
    star
    755
  • Rank 60,125 (Top 2 %)
  • Language
    Python
  • Created about 7 years ago
  • Updated over 5 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Codebase for the paper LSTM Fully Convolutional Networks for Time Series Classification

LSTM FCN for Time Series Classification

LSTM FCN models, from the paper LSTM Fully Convolutional Networks for Time Series Classification, augment the fast classification performance of Temporal Convolutional layers with the precise classification of Long Short Term Memory Recurrent Neural Networks.

Multivariate LSTM-FCN for Time Series Classification

General LSTM-FCNs are high performance models for univariate datasets. However, on multivariate datasets, we find that their performance is not optimal if applied directly. Therefore, we introduce Multivariate LSTM-FCN (MLSTM-FCN) for such datasets.

Paper: Multivariate LSTM-FCNs for Time Series Classification
Repository: MLSTM-FCN

Ablation Study of LSTM-FCN for Time Series Classification

Over the past year there have been several questions that have been raised by the community about the details of the model such as :

  • Why we chose to augment a Fully Convolutional Network with an LSTM?
  • What is dimension shuffle actually doing?
  • After dimension shuffle, does the LSTM simply lose all recurrent behaviour?
  • Why not replace the LSTM by another RNN such as GRU?
  • Whether there is any actual improvement to be obtained from this augmentation?

We therefore perform a detailed ablation study, composing nearly 3,627 experiments that attempt to analyse and answer these questions and to provide a better understanding of the LSTM-FCN/ALSTM-FCN time series classification model and each of its sub-module.

The paper, titled Insights into LSTM Fully Convolutional Networks for Time Series Classification can be read for a thorough discussion and statistical analysis of the benefit of the Dimension Shuffled LSTM to the Fully Convolutional Network.

Paper: Insights into LSTM Fully Convolutional Networks for Time Series Classification Repository: LSTM-FCN-Ablation

Installation

Download the repository and apply pip install -r requirements.txt to install the required libraries.

Keras with the Tensorflow backend has been used for the development of the models, and there is currently no support for Theano or CNTK backends. The weights have not been tested with those backends.

The data can be obtained as a zip file from here - http://www.cs.ucr.edu/~eamonn/time_series_data/

Extract that into some folder and it will give 127 different folders. Copy paste the util script extract_all_datasets.py to this folder and run it to get a single folder _data with all 127 datasets extracted. Cut-paste these files into the Data directory.

Note : The input to the Input layer of all models will be pre-shuffled to be in the shape (Batchsize, 1, Number of timesteps), and the input will be shuffled again before being applied to the CNNs (to obtain the correct shape (Batchsize, Number of timesteps, 1)). This is in contrast to the paper where the input is of the shape (Batchsize, Number of timesteps, 1) and the shuffle operation is applied before the LSTM to obtain the input shape (Batchsize, 1, Number of timesteps). These operations are equivalent.

Training and Evaluation

All 127 UCR datasets can be evaluated with the provided code and weight files. Refer to the weights directory for clarification.

There is now exactly 1 script to run all combinations of the LSTM-FCN, and its Attention variant, on the three different Cell combinations (8, 64, 128), on all 127 datasets in a loop.

  • To use the LSTM FCN model : model = generate_lstmfcn()
  • To use the ALSTM FCN model : model = generate_alstmfcn()

Training

Training now occurs in the innermost loop of the all_datasets_training.py.

A few parameters must be set in advance :

  • Datasets: Datasets must be listed as a pair (dataset name, id). The (name, id) pair for all 127 datasets has been preset. They correspond to the ids inside constants.py inside the utils directory. `

  • Models : Models in the list must be defined as a (model_name, model_function) pair. Please note : The model_function must be a model that returns a Keras Model, not an actual Model itself. The model_function can accept 3 parameters - maximum sequence length, number of classes and optionally the number of cells.

  • Cells : The configurations of cells required to be trained over. The default is [8, 64, 128], corresponding to the paper.

After this, once training begins, each model will trained according to specificiation and log files will be written to which describe all the parameters for convenience along with the training and testing set accuracy at the end of training.

Weight files will automatically be saved in the correct directories and can be used for later analysis.

Training Inner-loop

To train the a model, uncomment the line below and execute the script. Note that '???????' will already be provided, so there is no need to replace it. It refers to the prefix of the saved weight file. Also, if weights are already provided, this operation will overwrite those weights.

train_model(model, did, dataset_name_, epochs=2000, batch_size=128,normalize_timeseries=normalize_dataset)

Evaluate Inner-loop

To evaluate the performance of the model, simply execute the script with the below line uncommented.

evaluate_model(model, did, dataset_name_, batch_size=128,normalize_timeseries=normalize_dataset)

Evaluate

There is no seperate script for evaluation. In order to re-evaluate trained models, please comment out the train_model function in the inner-most loop.

Visualization

Due to the automatic name generation of folders and weight paths, careful selection of 3 common parameters will be required for all of the visualizations below:

  • DATASET_ID: The unique integer id inside constants.py referring to the dataset.

  • num_cells: The number of LSTM / Attention LSTM Cells.

  • model: The model function used to build the corresponding Keras Model.

Next is the selection of the dataset_name and model_name. The dataset_name must match the name of the dataset inside the all_dataset_traning.py script. Similarly, the model_name must match the name of the model in MODELS inside all_dataset_training.py.

Filters Visualization

To visualize the output of the Convolution filters of either the LSTMFCN or the Attention LSTMFCN, utilize the visualize_filters.py script.

There are two parameters, CONV_ID which refers to the convolution block number (and therefore ranges from [0, 2]) and FILTER_ID whose value dictates which filters of the convolution layer is selected. Its range depends on the CONV_ID selected, rangeing from [0, 127] for CONV_ID = {0, 2} and [0, 255] for CONV_ID = 1.

Context Visualization

To visualize the context vector of the Attention LSTM module, please utilize the visualize_context.py script.

To generate the context over all samples in the dataset, modify LIMIT=None. Setting VISUALIZE_CLASSWISE=False is also recommended to speed up the computation. Note that for the larger datasets, generation of the image may take exorbitant amounts of time, and the output may not be pleasant. We suggest visualizing classwise with 1 sample per class instead, as shown above.

Class Activation Maps

To visualize the class activation map of the final convolution layer, execute the visualize_cam.py. The class of the input signal being visualized can be changed by changing the CLASS_ID from (0 to NumberOfClasses - 1).

Results

Results Based on Test Validation Checkpoint

Results Based on Minimum Training Loss

Critical Difference Diagram

Wilcoxson Signed Rank Test - Statistical Test

After applying a Dunn-Sidak Correction, we compare the p-value table to an alpha level of 0.00465. Results show ALSTM, LSTM, and the Ensemble Methods (COTE and EE) are statistically the same.

Citation

@article{karim2018lstm,
  title={LSTM fully convolutional networks for time series classification},
  author={Karim, Fazle and Majumdar, Somshubra and Darabi, Houshang and Chen, Shun},
  journal={IEEE Access},
  volume={6},
  pages={1662--1669},
  year={2018},
  publisher={IEEE}
}

More Repositories

1

Neural-Style-Transfer

Keras Implementation of Neural Style Transfer from the paper "A Neural Algorithm of Artistic Style" (http://arxiv.org/abs/1508.06576) in Keras 2.0+
Jupyter Notebook
2,271
star
2

Image-Super-Resolution

Implementation of Super Resolution CNN in Keras.
Python
832
star
3

neural-image-assessment

Implementation of NIMA: Neural Image Assessment in Keras
Python
780
star
4

DenseNet

DenseNet implementation in Keras
Python
706
star
5

MLSTM-FCN

Multivariate LSTM Fully Convolutional Networks for Time Series Classification
Python
490
star
6

neural-architecture-search

Basic implementation of [Neural Architecture Search with Reinforcement Learning](https://arxiv.org/abs/1611.01578).
Python
431
star
7

keras-squeeze-excite-network

Implementation of Squeeze and Excitation Networks in Keras
Python
400
star
8

Inception-v4

Inception-v4, Inception - Resnet-v1 and v2 Architectures in Keras
Python
385
star
9

Keras-Classification-Models

Collection of Keras models used for classification
Python
317
star
10

Snapshot-Ensembles

Snapshot Ensemble in Keras
Python
305
star
11

keras-non-local-nets

Keras implementation of Non-local Neural Networks
Python
290
star
12

keras-one-cycle

Implementation of One-Cycle Learning rate policy (adapted from Fast.ai lib)
Python
285
star
13

Super-Resolution-using-Generative-Adversarial-Networks

An implementation of SRGAN model in Keras
Python
283
star
14

tf-TabNet

A Tensorflow 2.0 implementation of TabNet.
Python
238
star
15

Keras-ResNeXt

Implementation of ResNeXt models from the paper Aggregated Residual Transformations for Deep Neural Networks in Keras 2.0+.
Python
224
star
16

tfdiffeq

Tensorflow implementation of Ordinary Differential Equation Solvers with full GPU support
Python
218
star
17

Keras-NASNet

"NASNet" models in Keras 2.0+ with weights
Python
200
star
18

keras-efficientnets

Keras Implementation of EfficientNets
Python
187
star
19

tf_SIREN

Tensorflow 2.0 implementation of Sinusodial Representation networks (SIREN)
Python
149
star
20

keras-coordconv

Keras implementation of CoordConv for all Convolution layers
Python
148
star
21

MobileNetworks

Keras implementation of Mobile Networks
Python
132
star
22

keras-adabound

Keras implementation of AdaBound
Python
130
star
23

progressive-neural-architecture-search

Implementation of Progressive Neural Architecture Search in Keras and Tensorflow
Python
120
star
24

keras-attention-augmented-convs

Keras implementation of Attention Augmented Convolutional Neural Networks
Python
120
star
25

Keras-DualPathNetworks

Dual Path Networks for Keras 2.0+
Python
114
star
26

Wide-Residual-Networks

Wide Residual Networks in Keras
Python
112
star
27

Fast-Neural-Style

Implementation of "Perceptual Losses for Real-Time Style Transfer and Super-Resolution" in Keras
Python
109
star
28

Keras-Group-Normalization

A Keras implementation of https://arxiv.org/abs/1803.08494
Python
103
star
29

BatchRenormalization

Batch Renormalization algorithm implementation in Keras
Python
98
star
30

Nested-LSTM

Keras implementation of Nested LSTMs
Python
90
star
31

keras-SRU

Implementation of Simple Recurrent Unit in Keras
Python
89
star
32

Fully-Connected-DenseNets-Semantic-Segmentation

Fully Connected DenseNet for Image Segmentation (https://arxiv.org/pdf/1611.09326v1.pdf)
Python
84
star
33

keras-LAMB-Optimizer

Implementation of the LAMB optimizer for Keras from the paper "Reducing BERT Pre-Training Time from 3 Days to 76 Minutes"
Python
76
star
34

tf-eager-examples

A set of simple examples ported from PyTorch for Tensorflow Eager Execution
Jupyter Notebook
73
star
35

keras_rectified_adam

Implementation of Rectified Adam in Keras
Python
69
star
36

Keras-IndRNN

Implementation of IndRNN in Keras
Python
67
star
37

LSTM-FCN-Ablation

Repository for the ablation study of "Long Short-Term Memory Fully Convolutional Networks for Time Series Classification"
Python
55
star
38

keras-octconv

Keras implementation of Octave Convolutions
Python
53
star
39

keras-global-context-networks

Keras implementation of Global Context Attention blocks
Python
46
star
40

Neural-Style-Transfer-Windows

Windows Form application written in C# to ease usage of neural style transfer script
Python
43
star
41

tf_fourier_features

Tensorflow 2.0 implementation of Fourier Feature Mapping Networks.
Python
42
star
42

Keras-Multiplicative-LSTM

Miltiplicative LSTM for Keras 2.0+
Python
42
star
43

keras_mixnets

Keras Implementation of MixNets: Mixed Depthwise Convolutions
Python
39
star
44

Keras-just-another-network-JANET

Keras implementation of [The unreasonable effectiveness of the forget gate](https://arxiv.org/abs/1804.04849)
Jupyter Notebook
35
star
45

keras-switchnorm

Switch Normalization implementation for Keras 2+
Python
30
star
46

keras-neural-alu

A Keras implementation of Neural Arithmatic and Logical Unit
Python
27
star
47

keras-mobile-colorizer

U-Net Model conditioned with MobileNet features for Grayscale -> Color mapping
Python
25
star
48

Deep-Columnar-Convolutional-Neural-Network

Deep Columnar Convolutional Neural Network architecture, which is based on Multi Columnar DNN (Ciresan 2012).
Python
24
star
49

keras-SparseNet

Keras Implementation of SparseNets
Python
23
star
50

Residual-of-Residual-Networks

Residual Network of Residual Networks in Keras
Python
22
star
51

pyshac

A Python library for the Sequential Halving and Classification algorithm
Python
21
star
52

keras_novograd

Keras implementation of NovoGrad
Python
20
star
53

Adversarial-Attacks-Time-Series

Codebase for the paper "Adversarial Attacks on Time Series"
Python
20
star
54

simple_diffusion

Simple notebooks to learn diffusion models on toy datasets
Jupyter Notebook
17
star
55

keras-normalized-optimizers

Wrapper for Normalized Gradient Descent in Keras
Jupyter Notebook
17
star
56

keras-padam

Keras implementation of Padam from "Closing the Generalization Gap of Adaptive Gradient Methods in Training Deep Neural Networks"
Python
17
star
57

pytorch_odegan

Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary Differential Equations
Python
16
star
58

tf-sha-rnn

Tensorflow port implementation of Single Headed Attention RNN
Python
16
star
59

warprnnt_numba

WarpRNNT loss ported in Numba CPU/CUDA for Pytorch
Jupyter Notebook
16
star
60

Advanced_Machine_Learning

Python
16
star
61

dtw-numba

Implementation of Dynamic Time Warping algorithm with speed improvements based on Numba.
Python
16
star
62

keras-minimal-rnn

Keras implementation of MinimalRNN: Toward More Interpretable and Trainable Recurrent Neural Networks
Python
16
star
63

TweetSentimentAnalysis

CS583 course project
Python
14
star
64

lambda_networks_pt

Lambda Networks implemented in PyTorch
Python
13
star
65

tf_GON

Tensorflow 2.x implementation of Gradient Origin Networks
Python
13
star
66

tf_neural_deconvolution

Neural Deconvolutions in Tensorflow
Python
12
star
67

Python-Work

Python scripts to facilitate easy working
Jupyter Notebook
11
star
68

PyCTakesParser

Utilities to parse the output of cTAKES
Python
10
star
69

tf_star_rnn

Tensorflow 2.0 implementation of STAR RNN
Python
10
star
70

Deep-Dream

Deep Dream implementation in Keras
Python
9
star
71

Kaggle

Kaggle competition library. Uses Python 3.4.1 with almost all known python libraries for Machine Learning
Python
7
star
72

Music-Recognition

C# project to perform Frequency Analysis of music
C#
5
star
73

Rabin-Karp-String-Matching

C
4
star
74

Data-Science

Library of Data Science classes
Python
3
star
75

diffusion_model_nemo

Python
3
star
76

Ragial-Searcher

The Core Java library used to parse and store Ragial.com data
HTML
3
star
77

MSApriori

Multiple support apriori algorithm in Java
Java
3
star
78

RagialNotifier

Android App to parse ragial.com using the Ragial Searcher library to track items and notify the user if the item is on sale. Developed for the game Ragnarok Online, developed and owned by Gravity Inc.
Java
3
star
79

IDS-Course-Project

Intro to Data Science Project
Python
2
star
80

ML-Tools

Python
2
star
81

braindrain-uncommonhacks

JavaScript
2
star
82

Tiger-Game

Tiger Game in Python 2.7 / 3.4+
Python
2
star
83

8086-Microprocessor

An attempt to emulate an 8086 microprocessor, with its ASM instruction set.
Java
2
star
84

titu1994.github.io

HTML
2
star
85

Adaptive-Sorting-Algorithm

Analysis and implementation of Machine Learning Decision Tree to classify best algorithm for given data set
C#
2
star
86

Optimal-Binary-Search-Tree

C
2
star
87

Naive-String-Matching

C
2
star
88

Recurstion-C

Recursion in C
C
2
star
89

Java-Adaptive-Sorting-Algorithm

Adaptive Sorting Algorithm using Decision Trees to decide which algorithm will be optimal to sort a given dataset.
Java
2
star
90

Quick-Sort

Quick Sort in Java
1
star
91

Rate-Monotonic-Scheduling-Algorithm

Java
1
star
92

WT-Mini-Project

CSS
1
star
93

Kruskals-Algorithm

C
1
star
94

Stack

Stack
C
1
star
95

Doublu-Linked-List

Doubly Linked List
C
1
star
96

CircularLinkedList

Circular Linked List in C
C
1
star
97

Knuth-Morris-Pratt

C
1
star
98

MyLib

1
star
99

Polynomial-Linked-List

Polynomial Linked List
C
1
star
100

SOOAD-Mini-Project

Java
1
star