Tensorflow1 Cookbook
Contributions
In now, this repo provides general architectures
and functions
that are useful for the GAN and classification.
I will continue to add useful things to other areas.
Also, your pull requests and issues are always welcome.
And tell me what you want to implement on the issue. I'll implement it.
Functional vs Sequential
[Template code]
Functional APIPros
- More fast than Sequential
- More easy to create a flexible model architecture
- Easy to use some layer operaions like
concatenate
,add
, ...
- Easy to use some layer operaions like
Cons
- Define
tf.keras.layers.Input
- You have to know the
shape of input tensor
- You have to know the
- Define
tf.keras.Model
- You have to create the
Model
constructor at the end
- You have to create the
[Template code]
Sequential APIPros
- Simple to use
- Similar to Pytorch style
Cons
- Hard to create a flexible model architecture
Example code
How to use
1. Import
Funtional API
ops_functional.py
- Functional API operations
- from ops_functional import *
Sequential API
ops_sequential.py
- Sequential API operations
- from ops_sequential import *
Common
utils.py
- image processing + something useful functions (e.g. automatic_gpu_usage)
automatic_gpu_usage
: Automatically manage gpu memorymultiple_gpu_usage
: You can set gpu memory limit
- from utils import *
- image processing + something useful functions (e.g. automatic_gpu_usage)
2. Network template
Functional API
from ops_functional import *
from utils import *
automatic_gpu_usage() # for efficient gpu use
input_shape = [img_height, img_width, img_ch]
inputs = tf.keras.layers.Input(input_shape, name='input')
# architecture
x = conv(inputs, channels=64, kernel=3, stride=2, pad=1, pad_type='reflect', use_bias=False, sn=False, name='conv')
x = batch_norm(x, name='batch_norm')
x = relu(x)
x = global_avg_pooling(x)
x = fully_connected(x, units=10, sn=False, name='fc')
model = tf.keras.Model(inputs, s, name='model')
optimizer = tf.keras.optimizers.Adam(learning_rate=0.01)
Sequential API
from ops_sequential import *
from utils import *
automatic_gpu_usage() # for efficient gpu use
model = []
model += [Conv(channels=64, kernel=3, stride=2, pad=1, pad_type='reflect', use_bias=False, sn=False, name='conv')]
model += [BatchNorm(name)]
model += [Relu()]
model += [Global_Avg_Pooling()]
model += [FullyConnected(units=10, sn=False, name='fc')]
model = Sequential(model, name='model')
optimizer = tf.keras.optimizers.Adam(learning_rate=0.01)
3. Data pipeline
img_class = Image_data(img_height, img_width, img_ch, dataset_path, augment_flag)
img_class.preprocess()
img_slice = tf.data.Dataset.from_tensor_slices(img_class.dataset)
gpu_device = '/gpu:0'
img_slice = img_slice. \
apply(shuffle_and_repeat(dataset_num)). \
apply(map_and_batch(img_class.image_processing, self.batch_size,
num_parallel_batches=AUTOTUNE,
drop_remainder=True)). \
apply(prefetch_to_device(gpu_device, AUTOTUNE))
dataset_iter = iter(img_slice)
4. Restore
ckpt = tf.train.Checkpoint(model=model, optimizer=optimizer)
manager = tf.train.CheckpointManager(ckpt, checkpoint_dir, max_to_keep=2)
start_iteration = 0
if manager.latest_checkpoint:
ckpt.restore(manager.latest_checkpoint)
start_iteration = int(manager.latest_checkpoint.split('-')[-1])
print('Latest checkpoint restored!!')
else:
print('Not restoring from saved checkpoint')
5-1. Train
def train_step(img):
with tf.GradientTape() as tape:
logit = model(img)
# calculate loss
"""
if classification
your_loss = cross_entropy_loss(logit, label)
"""
loss = your_loss + regularization_loss(model)
train_variable = model.trainable_variables
gradient = tape.gradient(loss, train_variable)
optimizer.apply_gradients(zip(gradient, train_variable))
return loss
def train():
# setup tensorboard
summary_writer = tf.summary.create_file_writer(log_dir)
for idx in range(start_iteration, total_iteration):
img = next(dataset_iter)
# update network
loss = train_step(img)
# save to tensorboard
with summary_writer.as_default():
tf.summary.scalar('loss', loss, step=idx)
# save ckpt
manager.save(checkpoint_number=idx + 1)
# save model for final step
manager.save(checkpoint_number=total_iteration)
[Template code]
5-2. Multi-GPUs trainstrategy = tf.distribute.MirroredStrategy()
NUM_GPUS = strategy.num_replicas_in_sync
total_iteration = iteration // NUM_GPUS
with strategy.scope():
# copy & paste
# 2. Network template
# 3. Data pipeline
# 4. Restore
def train_step(img):
""" SAME """
def distribute_train_step(img):
with strategy.scope():
loss = strategy.experimental_run_v2(train_step, args=(img))
loss = strategy.reduce(tf.distribute.ReduceOp.MEAN, loss, axis=None)
return loss
def train():
# setup tensorboard
summary_writer = tf.summary.create_file_writer(log_dir)
for idx in range(start_iteration, total_iteration):
img = next(dataset_iter)
# update network
loss = distribute_train_step(img)
"""
SAME
"""
Weight
weight_initializer = tf.initializers.RandomNormal(mean=0.0, stddev=0.02)
weight_regularizer = tf.keras.regularizers.l2(0.0001)
weight_regularizer_fully = tf.keras.regularizers.l2(0.0001)
Initialization
Xavier
: tf.initializers.GlorotUniform() or tf.initializers.GlorotNormal()He
: tf.initializers.VarianceScaling()Normal
: tf.initializers.RandomNormal(mean=0.0, stddev=0.02)Truncated normal
: tf.initializers.TruncatedNormal(mean=0.0, stddev=0.02)Orthogonal
: tf.initializers.Orthogonal0.02)
Regularization
l2_decay
: tf.keras.regularizers.l2(0.0001)orthogonal_regularizer
: orthogonal_regularizer(0.0001) # orthogonal_regularizer_fully(0.0001)
Option
padding='SAME'
- pad = ceil[ (kernel - stride) / 2 ]
pad_type
- 'zero' or 'reflect'
sn
- use spectral normalization of not
Examples of Functional API
Recurrent
x = various_rnn(x, n_hidden=128, n_layer=2, dropout_rate=0.5, training=True, bidirectional=True, rnn_type='lstm', name='rnn')
LSTM
GRU
Bidirectional
Deep (n_layer > 1)
Convolution
basic conv
x = conv(x, channels=64, kernel=3, stride=2, pad=1, pad_type='reflect', use_bias=True, sn=True, name='conv')
Partial Convolution)
partial conv (NVIDIAx = partial_conv(x, channels=64, kernel=3, stride=2, use_bias=True, padding='SAME', sn=True, name='partial_conv')
dilated conv
x = dilate_conv(x, channels=64, kernel=3, rate=2, use_bias=True, padding='VALID', sn=True, name='dilate_conv')
Deconvolution
basic deconv
x = deconv(x, channels=64, kernel=3, stride=1, padding='SAME', use_bias=True, sn=True, name='deconv')
Fully-connected
x = fully_connected(x, units=64, use_bias=True, sn=True, snamecope='fully_connected')
Pixel shuffle
x = conv_pixel_shuffle_down(x, scale_factor=2, use_bias=True, sn=True, name='pixel_shuffle_down')
x = conv_pixel_shuffle_up(x, scale_factor=2, use_bias=True, sn=True, name='pixel_shuffle_up')
down
===> [height, width] -> [height // scale_factor, width // scale_factor]up
===> [height, width] -> [height * scale_factor, width * scale_factor]
Block
residual block
x = resblock(x, channels=64, is_training=is_training, use_bias=True, sn=True, name='residual_block')
x = resblock_down(x, channels=64, is_training=is_training, use_bias=True, sn=True, name='residual_block_down')
x = resblock_up(x, channels=64, is_training=is_training, use_bias=True, sn=True, name='residual_block_up')
down
===> [height, width] -> [height // 2, width // 2]up
===> [height, width] -> [height * 2, width * 2]
dense block
x = denseblock(x, channels=64, n_db=6, is_training=is_training, use_bias=True, sn=True, name='denseblock')
n_db
===> The number of dense-block
residual-dense block
x = res_denseblock(x, channels=64, n_rdb=20, n_rdb_conv=6, is_training=is_training, use_bias=True, sn=True, name='res_denseblock')
n_rdb
===> The number of RDBn_rdb_conv
===> per RDB conv layer
attention block
x = self_attention(x, use_bias=True, sn=True, name='self_attention')
x = self_attention_with_pooling(x, use_bias=True, sn=True, name='self_attention_version_2')
x = squeeze_excitation(x, ratio=16, use_bias=True, sn=True, name='squeeze_excitation')
x = convolution_block_attention(x, ratio=16, use_bias=True, sn=True, name='convolution_block_attention')
x = global_context_block(x, use_bias=True, sn=True, name='gc_block')
x = srm_block(x, use_bias=False, is_training=is_training, name='srm_block')
Normalization
x = batch_norm(x, training=training, name='batch_norm')
x = layer_norm(x, name='layer_norm')
x = instance_norm(x, name='instance_norm')
x = group_norm(x, groups=32, name='group_norm')
x = pixel_norm(x)
x = batch_instance_norm(x, name='batch_instance_norm')
x = layer_instance_norm(x, name='layer_instance_norm')
x = switch_norm(x, scope='switch_norm')
x = condition_batch_norm(x, z, training=training, name='condition_batch_norm'):
x = adaptive_instance_norm(x, gamma, beta)
x = adaptive_layer_instance_norm(x, gamma, beta, smoothing=True, name='adaLIN')
- See this for how to use
condition_batch_norm
- See this for how to use
adaptive_instance_norm
- See this for how to use
adaptive_layer_instance_norm
&layer_instance_norm
Activation
x = relu(x)
x = lrelu(x, alpha=0.2)
x = tanh(x)
x = sigmoid(x)
x = swish(x)
x = elu(x)
Pooling & Resize
x = nearest_up_sample(x, scale_factor=2)
x = bilinear_up_sample(x, scale_factor=2)
x = nearest_down_sample(x, scale_factor=2)
x = bilinear_down_sample(x, scale_factor=2)
x = max_pooling(x, pool_size=2)
x = avg_pooling(x, pool_size=2)
x = global_max_pooling(x)
x = global_avg_pooling(x)
x = flatten(x)
x = hw_flatten(x)
Loss
classification loss
loss, accuracy = classification_loss(logit, label)
loss = dice_loss(n_classes=10, logit, label)
regularization loss
model_reg_loss = regularization_loss(model)
- If you want to use
regularizer
, then you should write it
pixel loss
loss = L1_loss(x, y)
loss = L2_loss(x, y)
loss = huber_loss(x, y)
loss = histogram_loss(x, y)
loss = gram_style_loss(x, y)
loss = color_consistency_loss(x, y)
histogram_loss
means the difference in the color distribution of the image pixel values.gram_style_loss
means the difference between the styles using gram matrix.color_consistency_loss
means the color difference between the generated image and the input image.
gan loss
d_loss = discriminator_loss(Ra=True, gan_type='wgan-gp', real_logit=real_logit, fake_logit=fake_logit)
g_loss = generator_loss(Ra=True, gan_type='wgan-gp', real_logit=real_logit, fake_logit=fake_logit)
Ra
- use relativistic gan or not
loss_func
vdb loss
d_bottleneck_loss = vdb_loss(real_mu, real_logvar, i_c) + vdb_loss(fake_mu, fake_logvar, i_c)
kl-divergence (z ~ N(0, 1))
loss = kl_loss(mean, logvar)