• Stars
    star
    173
  • Rank 220,124 (Top 5 %)
  • Language
    Python
  • License
    MIT License
  • Created over 5 years ago
  • Updated over 5 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Source code for our CVPR 2019 paper - PPGNet: Learning Point-Pair Graph for Line Segment Detection

PPGNet: Learning Point-Pair Graph for Line Segment Detection

PyTorch implementation of our CVPR 2019 paper:

PPGNet: Learning Point-Pair Graph for Line Segment Detection

Ziheng Zhang*, Zhengxin Li*, Ning Bi, Jia Zheng, Jinlei Wang, Kun Huang, Weixin Luo, Yanyu Xu, Shenghua Gao

(* Equal Contribution)

The poster can be found HERE.

pipe-line Demonstraton of juncton-line graph representaton G={V, E}. (a) an sample image patch with 10 junctons (V); (b) the graph which describes the connectvity of all junctons (G); (c) the adjacency matrix of all junctons (E, black means the junction pair is connected).

Requirements

  • Python >= 3.6
  • fire >= 0.1.3
  • numba >= 0.40.0
  • numpy >= 1.14.5
  • pytorch = 0.4.1
  • scikit-learn = 0.19.2
  • scipy = 1.1.0
  • tensorboard >= 1.11.0
  • tensorboardX >= 1.4
  • torchvision >= 0.2.1
  • OpenCV >= 3.4.3

Usage

  1. clone this repository (and make sure you fetch all .pth files right with git-lfs): git clone https://github.com/svip-lab/PPGNet.git
  2. download the preprocessed SIST-Wireframe dataset from BaiduPan (code:lnfp) or Google Drive.
  3. specify the dataset path in the train.sh script. (modify the --data-root parameter)
  4. run train.sh.

Please note that the code requires the GPU memory to be at least 24GB. For GPU with memory smaller than 24GB, you can use a smaller batch with --batch-size parameter and/or change the --block-inference-size parameter in train.sh to be a smaller integer to avoid the out-of-memory error.

Citation

Please cite our paper for any purpose of usage.

@inproceedings{zhang2019ppgnet,
  title={PPGNet: Learning Point-Pair Graph for Line Segment Detection},
  author={Ziheng Zhang and Zhengxin Li and Ning Bi and Jia Zheng and Jinlei Wang and Kun Huang and Weixin Luo and Yanyu Xu and Shenghua Gao},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2019}
}

More Repositories

1

impersonator

PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis
Python
1,725
star
2

PlanarReconstruction

[CVPR'19] Single-Image Piece-wise Planar 3D Reconstruction via Associative Embedding
Python
362
star
3

FastMVSNet

[CVPR'20] Fast-MVSNet: Sparse-to-Dense Multi-View Stereo With Learned Propagation and Gauss-Newton Refinement
Python
253
star
4

Indoor-SfMLearner

[ECCV'20] Patch-match and Plane-regularization for Unsupervised Indoor Depth Estimation
Python
151
star
5

HRNet-for-Fashion-Landmark-Estimation.PyTorch

[DeepFashion2 Challenge] Fashion Landmark Estimation with HRNet
Cuda
129
star
6

AS-MLP

[ICLR'22] This is an official implementation for "AS-MLP: An Axial Shifted MLP Architecture for Vision".
Python
124
star
7

GazeFollowing

Code for ACCV2018 paper 'Believe It or Not, We Know What You Are Looking at!'
Python
103
star
8

PlaneDepth

[CVPR2023] This is an official implementation for "PlaneDepth: Self-supervised Depth Estimation via Orthogonal Planes".
Python
100
star
9

CIDNN

CIDNN: Encoding Crowd Interaction with Deep Neural Network
Python
74
star
10

IVOS-W

[CVPR'21] Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild
Python
49
star
11

MLEP

Python
48
star
12

LBYLNet

[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.
Python
47
star
13

Weekly_Group_Meeting_Paper_List

42
star
14

RGBD-Counting

RGBD crowd counting
Python
38
star
15

WeakSVR

(CVPR 2023) Official implemention of the paper "Weakly Supervised Video Representation Learning with Unaligned Text for Sequential Videos"
Python
27
star
16

Locating_Counting_with_a_Depth_Prior

[TPAMI] Locating and Counting Heads in Crowds With a Depth Prior
Python
25
star
17

RGBD-Gaze

RGBD Based Gaze Estimation via Multi-task CNN
Python
22
star
18

SVIP-Sequence-VerIfication-for-Procedures-in-Videos

[CVPR2022] SVIP: Sequence VerIfication for Procedures in Videos
Python
19
star
19

ShanghaiTechRGBDSyn

[TPAMI] Locating and Counting Heads in Crowds With a Depth Prior
C++
11
star
20

Medical-Image-CodeBase-SVIP-Lab

Useful and frequently used code for computer vision
Python
9
star
21

Saliency-Detection-in-360-Videos

Saliency-Detection-in-360-Videos
Python
8
star
22

svip-lab.github.io

HTML
8
star
23

SvipLab-ChatGPT-Web-Share

7
star
24

CrowdCountingPAL

Python
7
star
25

SphericalDNNs

Python
6
star