• Stars
    star
    273
  • Rank 150,780 (Top 3 %)
  • Language
    Jupyter Notebook
  • Created over 5 years ago
  • Updated over 4 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Implementations in python of methods and programming assignments of course Machine Learning of Coursera by Andrew Ng

Machine Learning with Andrew Ng

Programming assignments that I implemented in python of Coursera's Machine Learning Course (it uses Octave/MATLAB). I also added some concepts and formulas that I think are useful to help to understand the algorithms.

In order to have a nice visualization of the concepts, formulas, codes and exercises, I did all the implementations in Jupyter Notebooks.

Programming Assignments Notebooks:

Programming Exercise 1 - Linear Regression
Programming Exercise 2 - Logistic Regression
Programming Exercise 3 - Multi-class Classification and Neural Networks
Programming Exercise 4 - Neural Networks Learning
Programming Exercise 5 - Regularized Linear Regression and Bias vs Variance
Programming Exercise 6 - Support Vector Machines
Programming Exercise 7 - K-Means Clustering and Principal Component Analysis
Programming Exercise 8 - Anomaly Detection and Recommender Systems