• Stars
    star
    550
  • Rank 80,860 (Top 2 %)
  • Language
    C++
  • Created over 3 years ago
  • Updated 5 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

This repo consists of aditya verma youtube channel code for different section.

Aditya-verma-youtube-playlist-code

This repo consists of aditya verma youtube channel code for different section, I am still working this soon it will be updated fully, This repo I made for the purpose of revision Time and space complexity will be updated for all programs. If you want to explore more programes of DSA you can visit this REPO

Show some  ❀️  by starring this repository! It will push me to give more percentage of efforts

Dynamic Programming

S.No Problem Handwritten Notes Time Space
1 Knapsack Recursion πŸ“˜ O(2^n) O(1)
2 Knapsack Memoization-Top-Down πŸ“˜ O(N*W) O(N*W)
3 Knapsack Bottom-Up(DP) πŸ“˜ O(N*W) O(N*W)
4 Subset sum(Knapsack Variation) πŸ“˜ O(N*W) O(N*W)
5 Equal sum partition(subset sum & Knapsack Variation) πŸ“˜ O(N*W) O(N*W)
6 Count of Subsets with given Sum(subset sum & Knapsack Variation) πŸ“˜ O(N*W) O(N*W)
7 Minimum subset sum difference πŸ“˜ O(N*W) O(N*W)
8 Count the number of subset with given difference πŸ“˜ O(N*W) O(N*W)
9 Target sum(Leetcode) πŸ“˜ O(N*W) O(N*W)
10 Unbounded Knapsack πŸ“˜ O(N*W) O(N*W)
11 Rod cutting problem(Unbounded Knapsack) πŸ“˜ O(N*W) O(N*W)
12 Coin change problem : maximum no of ways πŸ“˜ O(N*W) O(N*W)
13 Coin change problem: Minimum number of coin πŸ“˜ O(N*W) O(N*W)
14 Longest Common Subsequence Recursive πŸ“˜ O(N*W) O(N*W)
15 Longest Common Subsequence Top down (Memoization) πŸ“˜ O(N*W) O(N*W)
16 Longest Common Subsequence Bottom Up(DP) πŸ“˜ O(N*W) O(N*W)
17 Longest Common Substring πŸ“˜ O(N*W) O(N*W)
18 Print Longest Common Subsequence πŸ“˜ O(N*W) O(N*W)
19 Shortest Common Supersequence πŸ“˜ O(N*W) O(N*W)
20 Minimum insertion & deletion to convert a to b πŸ“˜ O(N*W) O(N*W)
21 Longest Palindromic Subsequence πŸ“˜ O(N*W) O(N*W)
22 Minimum number of deletions to make a string palindrome πŸ“˜ O(N*W) O(N*W)
23 Print Shortest Common Supersequence πŸ“˜ O(N*W) O(N*W)
24 Longest repeating subsequence πŸ“˜ O(N*W) O(N*W)
25 Sequence pattern matching πŸ“˜ O(N*W) O(N*W)
26 Minimum Number of insertion to make a string palindrome πŸ“˜ O(N*W) O(N*W)
27 Matrix Chain Multiplication Recursive πŸ“˜ O(N*W) O(N*W)
28 Matrix Chain Multiplication Top Down (Memoization) πŸ“˜ O(N*W) O(N*W)
29 Palindrome Partitioning Recursive πŸ“˜ O(N*W) O(N*W)
30 Palindrome Partitioning Memoization πŸ“˜ O(N*W) O(N*W)
31 Palindrome Partitioning Memoized optimization πŸ“˜ O(N*W) O(N*W)
32 Evaluate Expression to true Recursive πŸ“˜ O(N*W) O(N*W)
33 Evaluate expression to true memoization using map πŸ“˜ O(N*W) O(N*W)
34 Evaluate expression to true memoization using 3d array πŸ“˜ O(N*W) O(N*W)
35 Scramble string recursive πŸ“˜ O(N*W) O(N*W)
36 Scramble string Top Down πŸ“˜ O(N*W) O(N*W)
37 Egg dropping problem recursive πŸ“˜ O(N*W) O(N*W)
38 Egg dropping problem Top Down(memoization) πŸ“˜ O(N*W) O(N*W)
39 Egg dropping problem memoization optimization πŸ“˜ O(N*W) O(N*W)
40 Dynamic programming on trees Syntax πŸ“˜ O(N*W) O(N*W)
41 Diameter of binary tree πŸ“˜ O(N*W) O(N*W)
42 Max path sum from any node to any πŸ“˜ O(N*W) O(N*W)
43 Max path sum from leaf to leaf πŸ“˜ O(N*W) O(N*W)

Stack

S.No Problem Handwritten Notes Time Space
1 Nearest greater to right πŸ“˜ O(n) O(n)
2 Nearest greater to left πŸ“˜ O(n) O(n)
3 Nearest smaller to left πŸ“˜ O(n) O(n)
4 Nearest Smaller to right πŸ“˜ O(n) O(n)
5 Stock span problem πŸ“˜ O(n) O(n)
5 Maximum Rectangular Area in a Histogram πŸ“˜ O(n) O(n)
6 Max area rectangle in Binary matrix πŸ“˜ O(n) O(n)

Binary Search

S.No Problem Handwritten Notes Time Space
1 Binary Search πŸ“˜ O(logn) O(logn)
2 Binary search on reverse sorted array πŸ“˜ O(logn) O(logn)
3 Order not known or Agonostic BS πŸ“˜ O(logn) O(logn)

Heap

S.No Problem Handwritten Notes Time Space
1 Kth smallest element πŸ“˜ O(n log k) O(n log k)
2 Kth largest element in an array πŸ“˜ O(n log k) O(n log k)
3 Nearly Sorted Algorithm or sort k sorted array πŸ“˜ O(n log k) O(n log k)

Sliding Window

S.No Problem Handwritten Notes Time Space
1 Maximum Sum Subarray of size K πŸ“˜ O(n) O(1)
2 First negative integer in every window of size k πŸ“˜ O(n) O(K)