• Stars
    star
    2,541
  • Rank 18,052 (Top 0.4 %)
  • Language
    C++
  • License
    MIT License
  • Created over 3 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

C++ library based on tensorrt integration

Read this in other languages: English, 简体中文.

News:

Tutorial Video

An Out-of-the-Box TensorRT-based Framework for High Performance Inference with C++/Python Support

  • C++ Interface: 3 lines of code is all you need to run a YoloX

    // create inference engine on gpu-0
    //auto engine = Yolo::create_infer("yolov5m.fp32.trtmodel", Yolo::Type::V5, 0);
    auto engine = Yolo::create_infer("yolox_m.fp32.trtmodel", Yolo::Type::X, 0);
    
    // load image
    auto image = cv::imread("1.jpg");
    
    // do inference and get the result
    auto box = engine->commit(image).get();  // return vector<Box>
  • Python Interface:

    import pytrt
    
    model     = models.resnet18(True).eval().to(device)
    trt_model = tp.from_torch(model, input)
    trt_out   = trt_model(input)
    • simple yolo for python
    import os
    import cv2
    import numpy as np
    import pytrt as tp
    
    engine_file = "yolov5s.fp32.trtmodel"
    if not os.path.exists(engine_file):
        tp.compile_onnx_to_file(1, tp.onnx_hub("yolov5s"), engine_file)
    
    yolo   = tp.Yolo(engine_file, type=tp.YoloType.V5)
    image  = cv2.imread("car.jpg")
    bboxes = yolo.commit(image).get()
    print(f"{len(bboxes)} objects")
    
    for box in bboxes:
        left, top, right, bottom = map(int, [box.left, box.top, box.right, box.bottom])
        cv2.rectangle(image, (left, top), (right, bottom), tp.random_color(box.class_label), 5)
    
    saveto = "yolov5.car.jpg"
    print(f"Save to {saveto}")
    
    cv2.imwrite(saveto, image)
    cv2.imshow("result", image)
    cv2.waitKey()

INTRO

  1. High level interface for C++/Python.
  2. Simplify the implementation of custom plugin. And serialization and deserialization have been encapsulated for easier usage.
  3. Simplify the compile of fp32, fp16 and int8 for facilitating the deployment with C++/Python in server or embeded device.
  4. Models ready for use also with examples are RetinaFace, Scrfd, YoloV5, YoloX, Arcface, AlphaPose, CenterNet and DeepSORT(C++)

YoloX and YoloV5-series Model Test Report

app_yolo.cpp speed testing
  1. Resolution (YoloV5P5, YoloX) = (640x640), (YoloV5P6) = (1280x1280)
  2. max batch size = 16
  3. preprocessing + inference + postprocessing
  4. cuda10.2, cudnn8.2.2.26, TensorRT-8.0.1.6
  5. RTX2080Ti
  6. num of testing: take the average on the results of 100 times but excluding the first time for warmup
  7. Testing log: [workspace/perf.result.std.log (workspace/perf.result.std.log)
  8. code for testing: src/application/app_yolo.cpp
  9. images for testing: 6 images in workspace/inference
    • with resolution 810x1080,500x806,1024x684,550x676,1280x720,800x533 respetively
  10. Testing method: load 6 images. Then do the inference on the 6 images, which will be repeated for 100 times. Note that each image should be preprocessed and postprocessed.

Model Resolution Type Precision Elapsed Time FPS
yolox_x 640x640 YoloX FP32 21.879 45.71
yolox_l 640x640 YoloX FP32 12.308 81.25
yolox_m 640x640 YoloX FP32 6.862 145.72
yolox_s 640x640 YoloX FP32 3.088 323.81
yolox_x 640x640 YoloX FP16 6.763 147.86
yolox_l 640x640 YoloX FP16 3.933 254.25
yolox_m 640x640 YoloX FP16 2.515 397.55
yolox_s 640x640 YoloX FP16 1.362 734.48
yolox_x 640x640 YoloX INT8 4.070 245.68
yolox_l 640x640 YoloX INT8 2.444 409.21
yolox_m 640x640 YoloX INT8 1.730 577.98
yolox_s 640x640 YoloX INT8 1.060 943.15
yolov5x6 1280x1280 YoloV5_P6 FP32 68.022 14.70
yolov5l6 1280x1280 YoloV5_P6 FP32 37.931 26.36
yolov5m6 1280x1280 YoloV5_P6 FP32 20.127 49.69
yolov5s6 1280x1280 YoloV5_P6 FP32 8.715 114.75
yolov5x 640x640 YoloV5_P5 FP32 18.480 54.11
yolov5l 640x640 YoloV5_P5 FP32 10.110 98.91
yolov5m 640x640 YoloV5_P5 FP32 5.639 177.33
yolov5s 640x640 YoloV5_P5 FP32 2.578 387.92
yolov5x6 1280x1280 YoloV5_P6 FP16 20.877 47.90
yolov5l6 1280x1280 YoloV5_P6 FP16 10.960 91.24
yolov5m6 1280x1280 YoloV5_P6 FP16 7.236 138.20
yolov5s6 1280x1280 YoloV5_P6 FP16 3.851 259.68
yolov5x 640x640 YoloV5_P5 FP16 5.933 168.55
yolov5l 640x640 YoloV5_P5 FP16 3.450 289.86
yolov5m 640x640 YoloV5_P5 FP16 2.184 457.90
yolov5s 640x640 YoloV5_P5 FP16 1.307 765.10
yolov5x6 1280x1280 YoloV5_P6 INT8 12.207 81.92
yolov5l6 1280x1280 YoloV5_P6 INT8 7.221 138.49
yolov5m6 1280x1280 YoloV5_P6 INT8 5.248 190.55
yolov5s6 1280x1280 YoloV5_P6 INT8 3.149 317.54
yolov5x 640x640 YoloV5_P5 INT8 3.704 269.97
yolov5l 640x640 YoloV5_P5 INT8 2.255 443.53
yolov5m 640x640 YoloV5_P5 INT8 1.674 597.40
yolov5s 640x640 YoloV5_P5 INT8 1.143 874.91
app_yolo_fast.cpp speed testing. Never stop desiring for being faster
  • Highlight: 0.5 ms faster without any loss in precision compared with the above. Specifically, we remove the Focus and some transpose nodes etc, and implement them in CUDA kenerl function. But the rest remains the same.
  • Test log: workspace/perf.result.std.log
  • Code for testing: src/application/app_yolo_fast.cpp
  • Tips: you can do the modification while refering to the downloaded onnx. Any questions are welcomed through any kinds of contact.
  • Conclusion: the main idea of this work is to optimize the pre-and-post processing. If you go for yolox, yolov5 small version, the optimization might help you.
Model Resolution Type Precision Elapsed Time FPS
yolox_x_fast 640x640 YoloX FP32 21.598 46.30
yolox_l_fast 640x640 YoloX FP32 12.199 81.97
yolox_m_fast 640x640 YoloX FP32 6.819 146.65
yolox_s_fast 640x640 YoloX FP32 2.979 335.73
yolox_x_fast 640x640 YoloX FP16 6.764 147.84
yolox_l_fast 640x640 YoloX FP16 3.866 258.64
yolox_m_fast 640x640 YoloX FP16 2.386 419.16
yolox_s_fast 640x640 YoloX FP16 1.259 794.36
yolox_x_fast 640x640 YoloX INT8 3.918 255.26
yolox_l_fast 640x640 YoloX INT8 2.292 436.38
yolox_m_fast 640x640 YoloX INT8 1.589 629.49
yolox_s_fast 640x640 YoloX INT8 0.954 1048.47
yolov5x6_fast 1280x1280 YoloV5_P6 FP32 67.075 14.91
yolov5l6_fast 1280x1280 YoloV5_P6 FP32 37.491 26.67
yolov5m6_fast 1280x1280 YoloV5_P6 FP32 19.422 51.49
yolov5s6_fast 1280x1280 YoloV5_P6 FP32 7.900 126.57
yolov5x_fast 640x640 YoloV5_P5 FP32 18.554 53.90
yolov5l_fast 640x640 YoloV5_P5 FP32 10.060 99.41
yolov5m_fast 640x640 YoloV5_P5 FP32 5.500 181.82
yolov5s_fast 640x640 YoloV5_P5 FP32 2.342 427.07
yolov5x6_fast 1280x1280 YoloV5_P6 FP16 20.538 48.69
yolov5l6_fast 1280x1280 YoloV5_P6 FP16 10.404 96.12
yolov5m6_fast 1280x1280 YoloV5_P6 FP16 6.577 152.06
yolov5s6_fast 1280x1280 YoloV5_P6 FP16 3.087 323.99
yolov5x_fast 640x640 YoloV5_P5 FP16 5.919 168.95
yolov5l_fast 640x640 YoloV5_P5 FP16 3.348 298.69
yolov5m_fast 640x640 YoloV5_P5 FP16 2.015 496.34
yolov5s_fast 640x640 YoloV5_P5 FP16 1.087 919.63
yolov5x6_fast 1280x1280 YoloV5_P6 INT8 11.236 89.00
yolov5l6_fast 1280x1280 YoloV5_P6 INT8 6.235 160.38
yolov5m6_fast 1280x1280 YoloV5_P6 INT8 4.311 231.97
yolov5s6_fast 1280x1280 YoloV5_P6 INT8 2.139 467.45
yolov5x_fast 640x640 YoloV5_P5 INT8 3.456 289.37
yolov5l_fast 640x640 YoloV5_P5 INT8 2.019 495.41
yolov5m_fast 640x640 YoloV5_P5 INT8 1.425 701.71
yolov5s_fast 640x640 YoloV5_P5 INT8 0.844 1185.47

Setup and Configuration

Linux
  1. VSCode (highly recommended!)
  2. Configure your path for cudnn, cuda, tensorRT8.0 and protobuf.
  3. Configure the compute capability matched with your nvidia graphics card in Makefile/CMakeLists.txt
  4. Configure your library path in .vscode/c_cpp_properties.json
  5. CUDA version: CUDA10.2
  6. CUDNN version: cudnn8.2.2.26. Note that dev(.h file) and runtime(.so file) should be downloaded.
  7. tensorRT version:tensorRT-8.0.1.6-cuda10.2
  8. protobuf version(for onnx parser):protobufv3.11.4
  • CMake:
    • mkdir build && cd build
    • cmake ..
    • make yolo -j8
  • Makefile:
    • make yolo -j8
Linux: Compile for Python
  • compile and install
    • Makefile:
      • set use_python := true in Makefile
    • CMakeLists.txt:
      • set(HAS_PYTHON ON) in CMakeLists.txt
    • Type in make pyinstall -j8
    • Complied files are in python/pytrt/libpytrtc.so
Windows
  1. Please check the lean/README.md for the detailed dependency

  2. In TensorRT.vcxproj, replace the <Import Project="$(VCTargetsPath)\BuildCustomizations\CUDA 10.0.props" /> with your own CUDA path

  3. In TensorRT.vcxproj, replace the <Import Project="$(VCTargetsPath)\BuildCustomizations\CUDA 10.0.targets" /> with your own CUDA path

  4. In TensorRT.vcxproj, replace the <CodeGeneration>compute_61,sm_61</CodeGeneration> with your compute capability.

  5. Configure your dependency or download it to the foler /lean. Configure VC++ dir (include dir and refence)

  6. Configure your env, debug->environment

  7. Compile and run the example, where 3 options are available.

Windows: Compile for Python
  1. Compile pytrtc.pyd. Choose python in visual studio to compile
  2. Copy dll and execute 'python/copy_dll_to_pytrt.bat'
  3. Execute the example in python dir by 'python test_yolov5.py'
  • if installation is needed, switch to target env(e.g. your conda env) then 'python setup.py install', which has to be followed by step 1 and step 2.
  • the compiled files are in python/pytrt/libpytrtc.pyd
Other Protobuf Version
  • in onnx/make_pb.sh, replace the path protoc=/data/sxai/lean/protobuf3.11.4/bin/protoc in protoc with the protoc of your own version
#cd the path in terminal to /onnx
cd onnx

#execuete the command to make pb files
bash make_pb.sh
  • CMake:
    • replace the set(PROTOBUF_DIR "/data/sxai/lean/protobuf3.11.4") in CMakeLists.txt with the same path of your protoc.
mkdir build && cd build
cmake ..
make yolo -j64
  • Makefile:
    • replace the path lean_protobuf := /data/sxai/lean/protobuf3.11.4 in Makefile with the same path of protoc
make yolo -j64
TensorRT 7.x support
  • The default is tensorRT8.x
  1. Replace onnx_parser_for_7.x/onnx_parser to src/tensorRT/onnx_parser
    • bash onnx_parser/use_tensorrt_7.x.sh
  2. Configure Makefile/CMakeLists.txt path to TensorRT7.x
  3. Execute make yolo -j64
TensorRT 8.x support
  • The default is tensorRT8.x
  1. Replace onnx_parser_for_8.x/onnx_parser to src/tensorRT/onnx_parser
    • bash onnx_parser/use_tensorrt_8.x.sh
  2. Configure Makefile/CMakeLists.txt path to TensorRT8.x
  3. Execute make yolo -j64

Guide for Different Tasks/Model Support

YoloV5 Support
  • if pytorch >= 1.7, and the model is 5.0+, the model is suppored by the framework
  • if pytorch < 1.7 or yolov5(2.0, 3.0 or 4.0), minor modification should be done in opset.
  • if you want to achieve the inference with lower pytorch, dynamic batchsize and other advanced setting, please check our blog (now in Chinese) and scan the QRcode via Wechat to join us.
  1. Download yolov5
git clone [email protected]:ultralytics/yolov5.git
  1. Modify the code for dynamic batchsize
# line 55 forward function in yolov5/models/yolo.py 
# bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
# x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
# modified into:

bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
bs = -1
ny = int(ny)
nx = int(nx)
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

# line 70 in yolov5/models/yolo.py
#  z.append(y.view(bs, -1, self.no))
# modified into:
z.append(y.view(bs, self.na * ny * nx, self.no))

############# for yolov5-6.0 #####################
# line 65 in yolov5/models/yolo.py
# if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic:
#    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
# modified into:
if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic:
    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

# disconnect for pytorch trace
anchor_grid = (self.anchors[i].clone() * self.stride[i]).view(1, -1, 1, 1, 2)

# line 70 in yolov5/models/yolo.py
# y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
# modified into:
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * anchor_grid  # wh

# line 73 in yolov5/models/yolo.py
# wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
# modified into:
wh = (y[..., 2:4] * 2) ** 2 * anchor_grid  # wh
############# for yolov5-6.0 #####################


# line 52 in yolov5/export.py
# torch.onnx.export(dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'},  # shape(1,3,640,640)
#                                'output': {0: 'batch', 1: 'anchors'}  # shape(1,25200,85)  修改为
# modified into:
torch.onnx.export(dynamic_axes={'images': {0: 'batch'},  # shape(1,3,640,640)
                                'output': {0: 'batch'}  # shape(1,25200,85) 
  1. Export to onnx model
cd yolov5
python export.py --weights=yolov5s.pt --dynamic --include=onnx --opset=11
  1. Copy the model and execute it
cp yolov5/yolov5s.onnx tensorRT_cpp/workspace/
cd tensorRT_cpp
make yolo -j32
YoloV7 Support 1. Download yolov7 and pth
# from cdn
# or wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt

wget https://cdn.githubjs.cf/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt
git clone [email protected]:WongKinYiu/yolov7.git
  1. Modify the code for dynamic batchsize
# line 45 forward function in yolov7/models/yolo.py 
# bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
# x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
# modified into:

bs, _, ny, nx = map(int, x[i].shape)  # x(bs,255,20,20) to x(bs,3,20,20,85)
bs = -1
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

# line 52 in yolov7/models/yolo.py
# y = x[i].sigmoid()
# y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy
# y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
# z.append(y.view(bs, -1, self.no))
# modified into:
y = x[i].sigmoid()
xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy
wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i].view(1, -1, 1, 1, 2)  # wh
classif = y[..., 4:]
y = torch.cat([xy, wh, classif], dim=-1)
z.append(y.view(bs, self.na * ny * nx, self.no))

# line 57 in yolov7/models/yolo.py
# return x if self.training else (torch.cat(z, 1), x)
# modified into:
return x if self.training else torch.cat(z, 1)


# line 52 in yolov7/models/export.py
# output_names=['classes', 'boxes'] if y is None else ['output'],
# dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'},  # size(1,3,640,640)
#               'output': {0: 'batch', 2: 'y', 3: 'x'}} if opt.dynamic else None)
# modified into:
output_names=['classes', 'boxes'] if y is None else ['output'],
dynamic_axes={'images': {0: 'batch'},  # size(1,3,640,640)
              'output': {0: 'batch'}} if opt.dynamic else None)
  1. Export to onnx model
cd yolov7
python models/export.py --dynamic --grid --weight=yolov7.pt
  1. Copy the model and execute it
cp yolov7/yolov7.onnx tensorRT_cpp/workspace/
cd tensorRT_cpp
make yolo -j32
YoloX Support
  1. Download YoloX
git clone [email protected]:Megvii-BaseDetection/YOLOX.git
cd YOLOX
  1. Modify the code The modification ensures a successful int8 compilation and inference, otherwise Missing scale and zero-point for tensor (Unnamed Layer* 686) will be raised.
# line 206 forward fuction in yolox/models/yolo_head.py. Replace the commented code with the uncommented code
# self.hw = [x.shape[-2:] for x in outputs] 
self.hw = [list(map(int, x.shape[-2:])) for x in outputs]


# line 208 forward function in yolox/models/yolo_head.py. Replace the commented code with the uncommented code
# [batch, n_anchors_all, 85]
# outputs = torch.cat(
#     [x.flatten(start_dim=2) for x in outputs], dim=2
# ).permute(0, 2, 1)
proc_view = lambda x: x.view(-1, int(x.size(1)), int(x.size(2) * x.size(3)))
outputs = torch.cat(
    [proc_view(x) for x in outputs], dim=2
).permute(0, 2, 1)


# line 253 decode_output function in yolox/models/yolo_head.py Replace the commented code with the uncommented code
#outputs[..., :2] = (outputs[..., :2] + grids) * strides
#outputs[..., 2:4] = torch.exp(outputs[..., 2:4]) * strides
#return outputs
xy = (outputs[..., :2] + grids) * strides
wh = torch.exp(outputs[..., 2:4]) * strides
return torch.cat((xy, wh, outputs[..., 4:]), dim=-1)

# line 77 in tools/export_onnx.py
model.head.decode_in_inference = True
  1. Export to onnx
# download model
wget https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_m.pth

# export
export PYTHONPATH=$PYTHONPATH:.
python tools/export_onnx.py -c yolox_m.pth -f exps/default/yolox_m.py --output-name=yolox_m.onnx --dynamic --no-onnxsim
  1. Execute the command
cp YOLOX/yolox_m.onnx tensorRT_cpp/workspace/
cd tensorRT_cpp
make yolo -j32
YoloV3 Support
  • if pytorch >= 1.7, and the model is 5.0+, the model is suppored by the framework
  • if pytorch < 1.7 or yolov3, minor modification should be done in opset.
  • if you want to achieve the inference with lower pytorch, dynamic batchsize and other advanced setting, please check our blog (now in Chinese) and scan the QRcode via Wechat to join us.
  1. Download yolov3
git clone [email protected]:ultralytics/yolov3.git
  1. Modify the code for dynamic batchsize
# line 55 forward function in yolov3/models/yolo.py 
# bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
# x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
# modified into:

bs, _, ny, nx = map(int, x[i].shape)  # x(bs,255,20,20) to x(bs,3,20,20,85)
bs = -1
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()


# line 70 in yolov3/models/yolo.py
#  z.append(y.view(bs, -1, self.no))
# modified into:
z.append(y.view(bs, self.na * ny * nx, self.no))

# line 62 in yolov3/models/yolo.py
# if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic:
#    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
# modified into:
if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic:
    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
anchor_grid = (self.anchors[i].clone() * self.stride[i]).view(1, -1, 1, 1, 2)

# line 70 in yolov3/models/yolo.py
# y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
# modified into:
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * anchor_grid  # wh

# line 73 in yolov3/models/yolo.py
# wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
# modified into:
wh = (y[..., 2:4] * 2) ** 2 * anchor_grid  # wh


# line 52 in yolov3/export.py
# torch.onnx.export(dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'},  # shape(1,3,640,640)
#                                'output': {0: 'batch', 1: 'anchors'}  # shape(1,25200,85) 
# modified into:
torch.onnx.export(dynamic_axes={'images': {0: 'batch'},  # shape(1,3,640,640)
                                'output': {0: 'batch'}  # shape(1,25200,85) 
  1. Export to onnx model
cd yolov3
python export.py --weights=yolov3.pt --dynamic --include=onnx --opset=11
  1. Copy the model and execute it
cp yolov3/yolov3.onnx tensorRT_cpp/workspace/
cd tensorRT_cpp

# change src/application/app_yolo.cpp: main
# test(Yolo::Type::V3, TRT::Mode::FP32, "yolov3");

make yolo -j32
UNet Support
make dunet -j32
Retinaface Support
  1. Download Pytorch_Retinaface Repo
git clone [email protected]:biubug6/Pytorch_Retinaface.git
cd Pytorch_Retinaface
  1. Download model from the Training of README.md in https://github.com/biubug6/Pytorch_Retinaface#training .Then unzip it to the /weights . Here, we use mobilenet0.25_Final.pth

  2. Modify the code

# line 24 in models/retinaface.py
# return out.view(out.shape[0], -1, 2) is modified into 
return out.view(-1, int(out.size(1) * out.size(2) * 2), 2)

# line 35 in models/retinaface.py
# return out.view(out.shape[0], -1, 4) is modified into
return out.view(-1, int(out.size(1) * out.size(2) * 2), 4)

# line 46 in models/retinaface.py
# return out.view(out.shape[0], -1, 10) is modified into
return out.view(-1, int(out.size(1) * out.size(2) * 2), 10)

# The following modification ensures the output of resize node is based on scale rather than shape such that dynamic batch can be achieved.
# line 89 in models/net.py
# up3 = F.interpolate(output3, size=[output2.size(2), output2.size(3)], mode="nearest") is modified into
up3 = F.interpolate(output3, scale_factor=2, mode="nearest")

# line 93 in models/net.py
# up2 = F.interpolate(output2, size=[output1.size(2), output1.size(3)], mode="nearest") is modified into
up2 = F.interpolate(output2, scale_factor=2, mode="nearest")

# The following code removes softmax (bug sometimes happens). At the same time, concatenate the output to simplify the decoding.
# line 123 in models/retinaface.py
# if self.phase == 'train':
#     output = (bbox_regressions, classifications, ldm_regressions)
# else:
#     output = (bbox_regressions, F.softmax(classifications, dim=-1), ldm_regressions)
# return output
# the above is modified into:
output = (bbox_regressions, classifications, ldm_regressions)
return torch.cat(output, dim=-1)

# set 'opset_version=11' to ensure a successful export
# torch_out = torch.onnx._export(net, inputs, output_onnx, export_params=True, verbose=False,
#     input_names=input_names, output_names=output_names)
# is modified into:
torch_out = torch.onnx._export(net, inputs, output_onnx, export_params=True, verbose=False, opset_version=11,
    input_names=input_names, output_names=output_names)


  1. Export to onnx
python convert_to_onnx.py
  1. Execute
cp FaceDetector.onnx ../tensorRT_cpp/workspace/mb_retinaface.onnx
cd ../tensorRT_cpp
make retinaface -j64
DBFace Support
make dbface -j64
Scrfd Support
Arcface Support
auto arcface = Arcface::create_infer("arcface_iresnet50.fp32.trtmodel", 0);
auto feature = arcface->commit(make_tuple(face, landmarks)).get();
cout << feature << endl;  // 1x512
  • In the example of Face Recognition, workspace/face/library is the set of faces registered.
  • workspace/face/recognize is the set of face to be recognized.
  • the result is saved in workspace/face/resultworkspace/face/library_draw
CenterNet Support

check the great details in tutorial/2.0

Bert Support(Chinese Classification)

the INTRO to Interface

Python Interface:Get onnx and trtmodel from pytorch model more easily
  • Just one line of code to export onnx and trtmodel. And save them for usage in the future.
import pytrt

model = models.resnet18(True).eval()
pytrt.from_torch(
    model, 
    dummy_input, 
    max_batch_size=16, 
    onnx_save_file="test.onnx", 
    engine_save_file="engine.trtmodel"
)
Python Interface:TensorRT Inference
  • YoloX TensorRT Inference
import pytrt

yolo   = tp.Yolo(engine_file, type=tp.YoloType.X)   # engine_file is the trtmodel file
image  = cv2.imread("inference/car.jpg")
bboxes = yolo.commit(image).get()
  • Seamless Inference from Pytorch to TensorRT
import pytrt

model     = models.resnet18(True).eval().to(device) # pt model
trt_model = tp.from_torch(model, input)
trt_out   = trt_model(input)
C++ Interface:YoloX Inference
// create infer engine on gpu 0
auto engine = Yolo::create_infer("yolox_m.fp32.trtmodel", Yolo::Type::X, 0);

// load image
auto image = cv::imread("1.jpg");

// do inference and get the result
auto box = engine->commit(image).get();
C++ Interface:Compile Model in FP32/FP16
TRT::compile(
  TRT::Mode::FP32,   // compile model in fp32
  3,                          // max batch size
  "plugin.onnx",              // onnx file
  "plugin.fp32.trtmodel",     // save path
  {}                         //  redefine the shape of input when needed
);
  • For fp32 compilation, all you need is offering onnx file whose input shape is allowed to be redefined.
C++ Interface:Compile in int8
  • The in8 inference performs slightly worse than fp32 in precision(about -5% drop down), but stunningly faster. In the framework, we offer int8 inference
// define int8 calibration function to read data and handle it to tenor.
auto int8process = [](int current, int count, vector<string>& images, shared_ptr<TRT::Tensor>& tensor){
    for(int i = 0; i < images.size(); ++i){
    // int8 compilation requires calibration. We read image data and set_norm_mat. Then the data will be transfered into the tensor.
        auto image = cv::imread(images[i]);
        cv::resize(image, image, cv::Size(640, 640));
        float mean[] = {0, 0, 0};
        float std[]  = {1, 1, 1};
        tensor->set_norm_mat(i, image, mean, std);
    }
};


// Specify TRT::Mode as INT8
auto model_file = "yolov5m.int8.trtmodel";
TRT::compile(
  TRT::Mode::INT8,            // INT8
  3,                          // max batch size
  "yolov5m.onnx",             // onnx
  model_file,                 // saved filename
  {},                         // redefine the input shape
  int8process,                // the recall function for calibration
  ".",                        // the dir where the image data is used for calibration
  ""                          // the dir where the data generated from calibration is saved(a.k.a where to load the calibration data.)
);
  • We integrate into only one int8process function to save otherwise a lot of issues that might happen in tensorRT official implementation.
C++ Interface:Inference
  • We introduce class Tensor for easier inference and data transfer between host to device. So that as a user, the details wouldn't be annoying.

  • class Engine is another facilitator.

// load model and get a shared_ptr. get nullptr if fail to load.
auto engine = TRT::load_infer("yolov5m.fp32.trtmodel");

// print model info
engine->print();

// load image
auto image = imread("demo.jpg");

// get the model input and output node, which can be accessed by name or index
auto input = engine->input(0);   // or auto input = engine->input("images");
auto output = engine->output(0); // or auto output = engine->output("output");

// put the image into input tensor by calling set_norm_mat()
float mean[] = {0, 0, 0};
float std[]  = {1, 1, 1};
input->set_norm_mat(i, image, mean, std);

// do the inference. Here sync(true) or async(false) is optional
engine->forward(); // engine->forward(true or false)

// get the outut_ptr, which can used to access the output
float* output_ptr = output->cpu<float>();
C++ Interface:Plugin
  • You only need to define kernel function and inference process. The details of code(e.g the serialization, deserialization and injection of plugin etc) are under the hood.
  • Easy to implement a new plugin in FP32 and FP16. Refer to HSwish.cu for details.
template<>
__global__ void HSwishKernel(float* input, float* output, int edge) {

    KernelPositionBlock;
    float x = input[position];
    float a = x + 3;
    a = a < 0 ? 0 : (a >= 6 ? 6 : a);
    output[position] = x * a / 6;
}

int HSwish::enqueue(const std::vector<GTensor>& inputs, std::vector<GTensor>& outputs, const std::vector<GTensor>& weights, void* workspace, cudaStream_t stream) {

    int count = inputs[0].count();
    auto grid = CUDATools::grid_dims(count);
    auto block = CUDATools::block_dims(count);
    HSwishKernel <<<grid, block, 0, stream >>> (inputs[0].ptr<float>(), outputs[0].ptr<float>(), count);
    return 0;
}


RegisterPlugin(HSwish);

About Us

More Repositories

1

infer

A new tensorrt integrate. Easy to integrate many tasks
Cuda
370
star
2

A-series-of-NLP

Python
158
star
3

learning-cuda-trt

learning-cuda-trt
97
star
4

hard_decode_trt

Yolov5 inference on NVDec hardware decoder
C++
87
star
5

algorithm-cpp

algorithm-cpp projects
C++
73
star
6

http_server_cpp

C++的http服务器,简单好用
C
62
star
7

tensorRT_quantization

该代码与B站上的视频 https://www.bilibili.com/video/BV18L41197Uz/?spm_id_from=333.788&vd_source=eefa4b6e337f16d87d87c2c357db8ca7 相关联。
Python
55
star
8

A-series-of-CV

Shell
50
star
9

nlp-bilstm_crf-ner

nlp-bilstm+crf-ner
Python
47
star
10

word_2_vec

word_2_vec
Python
46
star
11

diffusion_from02hero

README.md
Jupyter Notebook
42
star
12

kiwi-rknn

rknn inference
C++
42
star
13

nerf

nerf
Python
41
star
14

makefile_tutorial_project

https://zhuanlan.zhihu.com/p/396448133
Roff
40
star
15

minio-cpp-sdk

基于curl的minio cpp sdk,实现上传下载和创建bucket,查询bucket等操作。简单好用
C++
38
star
16

shouxie_RNN

shouxie_RNN
Python
34
star
17

bp-cpp

彻底弄懂BP反向传播,15行代码,C++实现也简单,MNIST分类98.29%精度
C++
33
star
18

nlp-hmm-word-cut

nlp-hmm-word-cut
Python
28
star
19

seq2seq_translation

seq2seq_translation
Python
26
star
20

cpp-proj-template

cpp project template based on visual studio, OpenCV and CUDA, gdb debug, makefile
Makefile
26
star
21

LSTM_poetry_generate

LSTM_poetry_generate
Python
24
star
22

shouxieai

Config files for my GitHub profile.
14
star
23

cpp-rotation-album

cpp rotation album,基于cpp eigen实现的3d旋转相册,GAMES101复现内容
C++
11
star
24

nerf_from_scratch

重构nerf代码,更加容易读懂
Python
10
star
25

lover

520, lover
Python
10
star
26

bevfusion_02hero

Jupyter Notebook
10
star
27

cpp_Makefile_intro

C
8
star
28

CTC_loss_pytorch

Python
8
star
29

MTCNN

mtcnn 全程手写, python不掉包复现, CPU实时人脸检测, 延迟50ms以内
Python
8
star
30

threadpool-for-AI-deploy

C++ thread-pool-for-AI-deploy
7
star
31

DCNv2-PyTorch

DCNv2
Cuda
7
star
32

BaiduAI_SR_sent

BaiduAI_SR_sent
Python
6
star
33

Kalmanfilter_from_scratch

手写卡尔曼滤波 + 形象理论 + 轻量数学
Jupyter Notebook
6
star
34

dataset_dataloader

pytorch
Python
4
star
35

cpp-cases

学习c++的小案例集合
4
star
36

openvino_pro

openvino_pro
4
star
37

3d-wandering

3d wandering by python
Python
3
star
38

code_tensorRT_Pro_from_stratch

under construction for education
Makefile
3
star
39

sheepsheep

sheepsheep game environment
Python
2
star
40

shouxie_LSTM

shouxie_LSTM
1
star
41

matrix_linear

利用矩阵方式, 手写线性回归
Jupyter Notebook
1
star
42

shouxie_logistic-regression

手写线性回归
Python
1
star
43

tensorrt-pro-sample-python-classifier

tensorrt-pro-sample-python-classifier
Python
1
star
44

gradient_decen

Python
1
star