When Does Label Smoothing Help??? pytorch implementation
paper : https://arxiv.org/abs/1906.02629
Cross Entropy : python main.py --ce -> python TSNE.py --ce
Label Smoothing : python main.py -> python TSNE.py
simple Label Smoothing implementation code.
class LabelSmoothingCrossEntropy(nn.Module):
def __init__(self):
super(LabelSmoothingCrossEntropy, self).__init__()
def forward(self, x, target, smoothing=0.1):
confidence = 1. - smoothing
logprobs = F.log_softmax(x, dim=-1)
nll_loss = -logprobs.gather(dim=-1, index=target.unsqueeze(1))
nll_loss = nll_loss.squeeze(1)
smooth_loss = -logprobs.mean(dim=-1)
loss = confidence * nll_loss + smoothing * smooth_loss
return loss.mean()
from utils import LabelSmoothingCrossEntropy
criterion = LabelSmoothingCrossEntropy()
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
Visualized using TSNE algorithm with CIFAR10 Dataset. "When Does Label Smoothing Help ???" As mentioned, you can use label smoothing to classify classes more clearly.