Overview
This a ros package for multi lidar calibration by improving Qinghai's previous appearance-based work. Several method are to be implemented:
Dependency List
- PCL 1.8 (http://pointclouds.org/)
- Eigen 3
- Boost
- libpointmatcher (https://github.com/ethz-asl/libpointmatcher)
- Ceres-solver (http://ceres-solver.org/)
- YAML (https://github.com/jbeder/yaml-cpp)
This package was tested on Ubuntu 16.04, ROS Kinetic
Usage
- Create a yaml file
cfg.yaml
into a fold, please follow ../data/example/top_tail/cfg.yaml to write - Preproces raw pointcloud to keep points in planar surfaces. You can use the below function or CloudCompare software to filter redundant points:
- Extract planes from pointcloud using RANSAC
rosrun lidar_appearance_calibration calib_plane_extraction pcd ../data/example/top_front/cfg.yaml
rostopic pub /contact/icp std_msgs/String "data: ''"
rviz -d ../rviz/plane_extraction
- Visualize and check the extracted plane order (same colors mean that data are associated)
rosrun pcl_ros pcd_to_pointcloud ../data/example/top_front/plane/ref_planes.pcd 1
rosrun pcl_ros pcd_to_pointcloud ../data/example/top_front/plane/data_planes.pcd 1
rviz -d ../rviz/plane_extraction
- Implement ICP to minimize Plane-to-Plane error
- Auto initialization:
rosrun lidar_appearance_calibration calib_icp ../data/example/top_front/ref_cfg.yaml ../data/example/top_front/data_cfg.yaml a
- Manual initialization:
rosrun lidar_appearance_calibration calib_icp ../data/example/top_front/ref_cfg.yaml ../data/example/top_front/data_cfg.yaml m
- Call the program:
rostopic pub /contact/save_plane std_msgs/String "data: ''"
- Auto initialization:
- Visualize the calibration result
pcl_viewer ../data/example/top_front/merged_opt.pcd
Result
Reference
To use the code, pleace cite this paper:
@inproceedings{jiao2019novel,
title={A novel dual-lidar calibration algorithm using planar surfaces},
author={Jiao, Jianhao and Liao, Qinghai and Zhu, Yilong and Liu, Tianyu and Yu, Yang and Fan, Rui and Wang, Lujia and Liu, Ming},
booktitle={2019 IEEE Intelligent Vehicles Symposium (IV)},
pages={1499--1504},
year={2019},
organization={IEEE}
}