• Stars
    star
    363
  • Rank 117,374 (Top 3 %)
  • Language
    Python
  • Created about 2 years ago
  • Updated 8 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Python Domain-Driven-Design(DDD) Example

Python Domain-Driven-Design(DDD) Example

Intro

I've adopted the DDD pattern for my recent FastAPI project. DDD makes it easier to implement complex domain problems. Improved readability and easy code fix have significantly improved productivity. As a result, stable but flexible project management has become possible. I'm very satisfied with it, so I'd like to share this experience and knowledge.

Why DDD?

Using DDD makes it easy to maintain collaboration with domain experts, not only engineers.

  • It is possible to prevent the mental model and the actual software from being dualized.
  • Business logic is easy to manage.
  • Infrastructure change is flexible.

Objective

  • Let's create a simple hotel reservation system and see how each component of DDD is implemented.
  • Don't go too deep into topics like event sourcing.
  • Considering the running curve, this project consists only of essential DDD components.

Implementation

ERD

NOTES: The diagram below represents only the database tables.

erd

Bounded Context

bounded-context

  • Display(Handling tasks related to the hotel room display)
    • List Rooms
  • Reception(Handling tasks related to the hotel room reservation)
    • Make a reservation
    • Change the reservation details
    • Cancel a reservation
    • Check-in & Check-out

Reservation and reception can also be isolated, but let's say that reception handles it altogether for now.

Project Structure

src
β”œβ”€β”€ reception
β”‚   β”œβ”€β”€ application
β”‚   β”‚   └── use_case
β”‚   β”‚       β”œβ”€β”€ query
β”‚   β”‚       └── command
β”‚   β”œβ”€β”€ domain
β”‚   β”‚   β”œβ”€β”€ entity
β”‚   β”‚   β”œβ”€β”€ exception
β”‚   β”‚   β”œβ”€β”€ service
β”‚   β”‚   └── value_object
β”‚   β”œβ”€β”€ infra
β”‚   β”‚   β”œβ”€β”€ repository
β”‚   β”‚   └── external_apis
β”‚   └── presentation
β”‚       β”œβ”€β”€ grpc
β”‚       └── rest
β”‚            β”œβ”€β”€ request
β”‚            └── response
β”œβ”€β”€ display
β”‚   β”œβ”€β”€ application
β”‚   β”œβ”€β”€ domain
β”‚   β”œβ”€β”€ infra
β”‚   └── presentation
└── shared_kernel
    β”œβ”€β”€ domain
    └── infra
        β”œβ”€β”€ database
        β”œβ”€β”€ fastapi
        └── log

DDD Components

1. Entity: Definition

from dataclasses import dataclass, field


class Entity:
    id: int = field(init=False)
  
    def __eq__(self, other: Any) -> bool:
        if isinstance(other, type(self)):
            return self.id == other.id
        return False
  
    def __hash__(self):
        return hash(self.id)


class AggregateRoot(Entity):
    pass


@dataclass(eq=False, slots=True)
class Reservation(AggregateRoot):
    room: Room
    reservation_number: ReservationNumber
    reservation_status: ReservationStatus
    date_in: datetime
    date_out: datetime
    guest: Guest
  • Entity mix-in
    The entity is an object that have a distinct identity. I will implement __eq__() and __hash__(), to use it as a mix-in for dataclass.

  • AggregateRoot mix-in
    A DDD aggregate is a cluster of domain objects that can be treated as a single unit. An aggregate root is an entry point of an aggregate. Any references from outside the aggregate should only go to the aggregate root. The root can thus ensure the integrity of the aggregate as a whole. I will define an empty class called AggregateRoot and explicitly mark it.

  • Entity Implementation
    To use __eq__() from Entity mix-in, add eq=False. From Python 3.10, slots=True makes dataclass more memory-efficient.

  • Value Object
    With sqlalchemy, you can use value objects within entity when reading & saving data from a repository. I will introduce the details later.

2. Entity: Life Cycle

@dataclass(eq=False, slots=True)
class Reservation(AggregateRoot):
    # ...

    @classmethod
    def make(
        cls, room: Room, date_in: datetime, date_out: datetime, guest: Guest
    ) -> Reservation:
        room.reserve()
        return cls(
            room=room,
            date_in=date_in,
            date_out=date_out,
            guest=guest,
            reservation_number=ReservationNumber.generate(),
            reservation_status=ReservationStatus.IN_PROGRESS,
        )

    def cancel(self):
        if not self.reservation_status.in_progress:
            raise ReservationStatusException
  
        self.reservation_status = ReservationStatus.CANCELLED
  
    def check_in(self):
        # ...
  
    def check_out(self):
        # ...
  
    def change_guest(self, guest: Guest):
        # ...

By implementing the method according to the entity's life cycle, you can expect how it evolves when reading it.

  • Creation
    Declare a class method and use it when creating an entity.

  • Changes
    Declare an instance method and use it when changing an entity.

3. Entity: Table Mapping

NOTE: This is the most beautiful part of implementing DDD with sqlalchemy.

from sqlalchemy import MetaData, Table, Column, Integer, String, Text, ForeignKey, DateTime
from sqlalchemy.orm import registry

metadata = MetaData()
mapper_registry = registry()

room_table = Table(
  "hotel_room",
  metadata,
  Column("id", Integer, primary_key=True, autoincrement=True),
  Column("number", String(20), nullable=False),
  Column("status", String(20), nullable=False),
  Column("image_url", String(200), nullable=False),
  Column("description", Text, nullable=True),
  UniqueConstraint("number", name="uix_hotel_room_number"),
)

reservation_table = Table(
  "room_reservation",
  metadata,
  Column("id", Integer, primary_key=True, autoincrement=True),
  Column("room_id", Integer, ForeignKey("hotel_room.id"), nullable=False),
  Column("number", String(20), nullable=False),
  Column("status", String(20), nullable=False),
  Column("date_in", DateTime(timezone=True)),
  Column("date_out", DateTime(timezone=True)),
  Column("guest_mobile", String(20), nullable=False),
  Column("guest_name", String(50), nullable=True),
)


def init_orm_mappers():
  from reception.domain.entity.room import Room as ReceptionRoomEntity
  from reception.domain.entity.reservation import Reservation as ReceptionReservationEntity

  mapper_registry.map_imperatively(
    ReceptionRoomEntity,
    room_table,
    properties={
      "room_status": composite(RoomStatus.from_value, room_table.c.status),
    }
  )
  mapper_registry.map_imperatively(
    ReceptionReservationEntity,
    reservation_table,
    properties={
      "room": relationship(
        Room, backref="reservations", order_by=reservation_table.c.id.desc, lazy="joined"
      ),
      "reservation_number": composite(ReservationNumber.from_value, reservation_table.c.number),
      "reservation_status": composite(ReservationStatus.from_value, reservation_table.c.status),
      "guest": composite(Guest, reservation_table.c.guest_mobile, reservation_table.c.guest_name),
    }
  )

  from display.domain.entity.room import Room as DisplayRoomEntity

  mapper_registry.map_imperatively(
    DisplayRoomEntity,
    room_table,
    properties={
      "room_status": composite(RoomStatus.from_value, room_table.c.status),
    }
  )
# call this after app running
init_orm_mappers()

Because entities do not need to know the implementation of the database table, let's use sqlalchemy's imperative mapping to separate entity definitions and table definitions.

Because name conflicts can occur when mapping tables and entities, the number is replaced like reservation_number.

If you want to keep using the number as it is, you can change the original number to _number first.

@dataclass(eq=False, slots=True)
class Room(Entity):
    number: str
    room_status: RoomStatus

Entities only need to use logically required data among the columns defined in the table. For example, in the reservation domain, you don't need to know the image of the room, so only name, status is defined in the room.

4. Value Object

from pydantic import constr


mobile_type = constr(regex=r"\+[0-9]{2,3}-[0-9]{2}-[0-9]{4}-[0-9]{4}")

@dataclass(slots=True)
class Guest(ValueObject):
    mobile: mobile_type
    name: str | None = None

A value object is an object that matter only as the combination of its attributes. Guest A's name and mobile should be treated as a single unit, so make it a value object.

Using sqlalchemy's composite column type, it allows you to implement value objects by changing columns to an object that fits your needs when you load data.

Let's define the mix-in as follows and inherit it when implementing a value object.

class ValueObject:
    def __composite_values__(self):
        return self.value,
  
    @classmethod
    def from_value(cls, value: Any) -> ValueObjectType | None:
        if isinstance(cls, EnumMeta):
            for item in cls:
                if item.value == value:
                    return item
            raise ValueObjectEnumError
        
        instance = cls(value=value)
        return instance

If you define the __composite_values_() method, sqlalchemy separates the object and puts them in the columns when you save the data.

NOTE: The , in the return of __composite_value__() is not a typo.

class RoomStatus(ValueObject, str, Enum):
    AVAILABLE = "AVAILABLE"
    RESERVED = "RESERVED"
    OCCUPIED = "OCCUPIED"


@dataclass(slots=True)
class ReservationNumber(ValueObject):
    DATETIME_FORMAT: ClassVar[str] = "%y%m%d%H%M%S"
    RANDOM_STR_LENGTH: ClassVar[int] = 7
  
    value: str

    @classmethod
    def generate(cls) -> ReservationNumber:
        time_part: str = datetime.utcnow().strftime(cls.DATETIME_FORMAT)
        random_strings: str = ''.join(
          random.choice(string.ascii_uppercase + string.digits) 
          for _ in range(cls.RANDOM_STR_LENGTH)
        )
        return cls(value=time_part + ":" + random_strings)

ReservationNumber intentionally used the name value for a single attribute to leverage __composite_values__() in ValueObject class.

@dataclass(slots=True)
class Guest(ValueObject):
    mobile: mobile_type
    name: str | None = None

    def __composite_values__(self):
        return self.mobile, self.name

If a value object consists of more than one column, you must override the __composite_values__() as shown above.

5. Exception

class ReservationStatusException(BaseMsgException):
    message = "Invalid request for current reservation status."

    
@dataclass(eq=False, slots=True)
class Reservation(AggregateRoot):
    # ...
    
    def cancel(self):
        if not self.reservation_status.in_progress:
            raise ReservationStatusException
  
        self.reservation_status = ReservationStatus.CANCELLED

By defining and using domain exceptions, the cohesion can be increased.

Dependency Injection

FastAPI's Depends makes it easy to implement Dependency Injection between layers. And you can achieve Inversion of control with Dependency Injector.

@router.get("/reservations/{reservation_number}")
@inject
def get_reservation(
    reservation_number: str,
    reservation_query: ReservationQueryUseCase = Depends(
      Provide[AppContainer.reception.reservation_query]
    ),
):
    try:
      reservation: Reservation = reservation_query.get_reservation(
        reservation_number=reservation_number
      )
    except ReservationNotFoundException as e:
      raise HTTPException(
        status_code=status.HTTP_404_NOT_FOUND,
        detail=e.message,
      )
    return ReservationResponse(
      detail="ok",
      result=ReservationSchema.build(reservation=reservation),
  )
class ReservationQueryUseCase:
    def __init__(
        self,
        reservation_repo: ReservationRDBRepository,
        db_session: Callable[[], ContextManager[Session]],
    ):
        self.reservation_repo = reservation_repo
        self.db_session = db_session

    def get_reservation(self, reservation_number: str) -> Reservation:
        reservation_number = ReservationNumber.from_value(value=reservation_number)

        with self.db_session() as session:
            reservation: Reservation | None = (
                self.reservation_repo.get_reservation_by_reservation_number(
                    session=session, reservation_number=reservation_number
                )
            )

        if not reservation:
            raise ReservationNotFoundException

        return reservation
class ReservationRDBRepository(RDBRepository):
    @staticmethod
    def get_reservation_by_reservation_number(
        session: Session, reservation_number: ReservationNumber
    ) -> Reservation | None:
        return session.query(Reservation).filter_by(reservation_number=reservation_number).first()

Schema

Pydantic makes it easy to implement the request and response schema.

class CreateReservationRequest(BaseModel):
    room_number: str
    date_in: datetime
    date_out: datetime
    guest_mobile: mobile_type
    guest_name: str | None = None
class ReservationSchema(BaseModel):
    room: RoomSchema
    reservation_number: str
    status: ReservationStatus
    date_in: datetime
    date_out: datetime
    guest: GuestSchema

    @classmethod
    def build(cls, reservation: Reservation) -> ReservationSchema:
        return cls(
            room=RoomSchema.from_entity(reservation.room),
            reservation_number=reservation.reservation_number.value,
            status=reservation.reservation_status,
            date_in=reservation.date_in,
            date_out=reservation.date_out,
            guest=GuestSchema.from_entity(reservation.guest),
        )

class ReservationResponse(BaseResponse):
    result: ReservationSchema

Run server

$ uvicorn shared_kernel.infra.fastapi.main:app --reload

Requirements

  • Python 3.10+
    • 3.10 and lower versions can also take the key concepts